Читаем Искусственный интеллект на службе бизнеса полностью

В начале главы мы предположили, что стартапу машинного обучения лучше продавать прогноз, чем готовый диагноз. Почему врачи предпочтут прогноз? И зачем им владеть прогностической машиной и данными? Ответы – в уже изложенных соответствующих компромиссах. Ставить диагноз – основная работа врача, поэтому покупка прогноза не становится его ключевым стратегическим решением. Он продолжит заниматься тем же самым, только получит дополнительную информацию. Если это не ключевое стратегическое решение, врач может покупать прогноз без потребности владеть им или данными. Смысл стартапа заключается в ИИ, а прогноз обеспечивает его ценность для потребителей. Следовательно, пока стартап владеет данными и прогностической машиной, ему нет нужды владеть диагнозом. Граница между стартапом и врачами пролегает там, где ИИ теряет стратегическое значение и становится просто ресурсом для процесса.

Выводы

• Основной стратегический выбор заключается в определении границы компании, в том, где заканчивается ваш бизнес и начинается чужой (например, в партнерстве авиаперевозчиков и аутсорсинге производства автомобильных деталей). На этот выбор влияет неопределенность. Поскольку ее снижают прогностические машины, они воздействуют на границу между вашей и партнерскими организациями.

• Снижая неопределенность, прогностические машины расширяют возможности составления договоров и, следовательно, повышают стимул отдавать на аутсорсинг средства производства и проведение работ, направленных на данные, прогноз и действие. Одновременно прогностические машины снижают компаниям мотивацию на привлечение внешнего суждения. Его качество сложно описать в рамках договора и отслеживать. Если суждение поддается четкой формулировке, то его можно запрограммировать, для чего люди уже не понадобятся. Поскольку с распространением ИИ суждение, вероятно, сохранится за человеком, компании чаще будут нанимать сотрудников в штат и реже отдавать обязанности на аутсорсинг.

• ИИ повысит стимулы к владению данными. Тем не менее аутсорсинг данных бывает необходим, когда обеспечиваемые данными прогнозы для организации стратегически не важны. В таких случаях оптимально заказывать непосредственно прогнозы, а не данные для самостоятельного их составления.

Глава 15. Стратегия обучения

В марте 2017-го во вступительном слове к ежегодному событию I/O СЕО Google Сундар Пичаи объявил, что компания «вместо мобильных устройств начинает ориентироваться на ИИ». Затем последовал ряд заявлений с упоминанием ИИ в той или иной форме: от разработки специальных чипов для оптимизации машинного обучения до использования глубокого обучения в новых программах, в том числе по исследованию онкологических заболеваний, с целью внедрения ИИ-ассистента Google в как можно большее количество устройств. Пичаи сообщил, что компания переходит «от поиска и организации мировой информации к ИИ и машинному обучению».

Заявление в большей степени касалось стратегии, чем основополагающей концепции компании. Основатель Google Ларри Пейдж подчеркнул это в 2002 году:

«У нас не всегда получается то, чего от нас хотят люди, но это действительно трудно. Нужны недюжинный ум, понимание всего на свете, а также собственной задачи. Мы интенсивно работаем над созданием искусственного интеллекта… Итоговая поисковая машина будет умной – мы всё ближе и ближе к этому результату»[130].

В этом смысле Google уже много лет идет по пути создания ИИ. И лишь недавно открыто поставила технологии ИИ в центр всей своей деятельности.

Google не одинока в данной стратегической приверженности; Microsoft анонсировала «ориентированные на ИИ» намерения, также отодвинув на второй план мобильные устройства и облака[131]. Но что означает ориентированность на ИИ? В отходе от приоритизации мобильных устройств ориентация на них – это привлечение к ним трафика и оптимизация пользовательского интерфейса даже в ущерб всему сайту и другим платформам. Последнее имеет стратегическое значение. Цель – «качество воспроизведения на мобильном устройстве». Стремление к ней даже во вред остальным каналам и есть настоящая приверженность стратегии.

Что это значит в контексте приоритизации ИИ? Руководитель исследований Google Питер Норвиг отвечает:

Перейти на страницу:

Все книги серии МИФ. Бизнес

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Как гибнут великие и почему некоторые компании никогда не сдаются
Как гибнут великие и почему некоторые компании никогда не сдаются

Джим Коллинз, взирая взглядом ученого на безжизненные руины когда-то казавшихся несокрушимыми, а ныне канувших в Лету компаний, задается вопросом: как гибнут великие? Действительно ли крах происходит неожиданно или компания, не ведая того, готовит его своими руками? Можно ли обнаружить признаки упадка на ранней стадии и избежать его? Почему одни компании в трудных условиях остаются на плаву, а другие, сопоставимые с ними по всем показателям, идут ко дну? Насколько сильными должны быть кризисные явления, чтобы движение к гибели стало неотвратимым? Как совершить разворот и вернуться к росту? В своей книге Джим Коллинз отвечает на эти вопросы, давая руководителям обоснованную надежду на то, что можно не просто обнаружить и остановить упадок, но и возобновить рост.

Джим Коллинз

Деловая литература