Когда объективные критерии продуктивности (у кого короче очередь?) сменились субъективными (кто продает удовлетворяющий клиента продукт?), управление кадрами усложнилось. Экономисты подтвердят, что служебные обязанности непременно станут менее явными и более относительными. Оценка работы и вознаграждение будут основаны на субъективных процессах, таких как пересмотр эффективности, учитывающий сложность задач, а также сильные и слабые стороны сотрудников. Такие процессы внедрить сложно, поскольку требуется немалая доля доверия для того, чтобы они стали стимулами для усердной работы. В конце концов, компании проще отказать в бонусе, повышении зарплаты или служебного статуса, исходя из субъективной точки зрения, чем в присутствии объективных измеримых критериев. Но если использовать критерии в сложной среде, вероятны серьезные ошибки, как убедительно подтверждает опыт Уэллса Фарго с мошенничеством менеджеров по работе с клиентами[127]
.Непосредственный вывод из этого механизма экономики заключается в том, что благодаря ИИ управление персоналом из делового ранга перейдет в социальный. Причина двоякая. Во-первых, человеческое суждение используется там, где оно имеет ценность, потому что его трудно запрограммировать. Вознаграждение переменчиво, неизвестно или требует человеческого опыта. Во-вторых, человеческое суждение непременно включает в себя способы оценки продуктивности, субъективные до такой степени, до которой возрастает его значимость в результате распространения прогнозов. При наличии объективных способов машина, вероятно, могла бы выносить такое суждение без участия специалистов по кадрам. Таким образом, человек критически важен для принятия решений, если цели субъективны. И поэтому управление такими людьми, скорее всего, будет более социальным.
Следовательно, влияние ИИ на труд отличается от влияния на капитал. С ростом значимости суждения договоры с сотрудниками должны стать более субъективными.
Влияющие на капитал факторы воздействуют и на труд. Если основной результат человеческого труда – это данные, прогнозы или действия, то использование ИИ приведет к сотрудничеству с внешними работниками на контрактной основе и аутсорсингу оборудования и ресурсов. Как и с капиталом, точный прогноз повышает количество «если», которые можно использовать для четкого описания «то» в договоре с внешними партнерами.
Однако больше всего на труд повлияет рост значимости суждения. Прогноз и суждение – взаимодополняющие элементы, и вместе с качеством прогноза растет спрос на него. Основная роль сотрудников сведется к суждению для принятия решений, что по определению трудно сформулировать в договоре. В данном случае прогностическая машина повышает неопределенность стратегической дилеммы, потому что качество суждения трудно оценить, и, следовательно, аутсорсинг предполагает риск. Парадоксально, но чем точнее прогноз, тем выше неопределенность относительно качества работы людей. В компании должны быть свои разработчики функции вознаграждения и другие занимающиеся суждениями сотрудники.
Влияние ИИ: данные
Следующий важный стратегический вопрос заключается во владении данными и контроле над ними. Как последствия для рабочих связаны с взаимодополняемостью прогноза и суждения, так же эти компромиссы обусловлены отношениями между прогнозом и данными. Данные улучшают прогноз. Здесь мы рассматриваем компромиссы, связанные с границами организации. Использовать свои данные или чужие? (Далее мы изучим вопросы стратегического значения инвестирования в сбор данных.)
Для стартапов ИИ критически важно владеть данными для обучения, иначе они не смогут улучшить свой продукт со временем. Стартап машинного обучения Ada Support помогает компаниям взаимодействовать с клиентами. Ada получила возможность интегрировать свой продукт в систему крупного успешного провайдера чатов. Если бы все пошло как нужно, было бы гораздо проще продвигаться и заполучить б
Однако проблема заключалась в том, что данные обратной связи по взаимодействию с пользователем оставались во владении авторитетной компании. А без этих данных Ada не сможет улучшать продукт по результатам работы. Это заставило пересмотреть подход и отказаться от интеграции, пока не появится возможность овладеть полученными данными. Благодаря этому теперь у Ada сформирован и расширяется постоянный поток данных для непрерывного обучения.
Вопрос о том, приобрести или добывать данные, интересует далеко не только стартапы. Рассмотрим данные, разработанные для поиска целевой аудитории рекламодателями. Джон Уонамейкер, один из создателей современной структуры рекламы в СМИ, однажды заявил: «Половина средств на рекламу потрачена зря. Вот только я не знаю, какая именно».