Читаем Искусство программирования для Unix полностью

11.6.5. Модель компилятора

11.6.6. Модель редактора ed

11.6.7. Rogue-подобная модель

11.6.8. Модель "разделения ядра и интерфейса"

11.6.8.1. Пара конфигуратор/актор

11.6.8.2. Пара спулер/демон

11.6.8.3. Пара драйвер/ядро

11.6.8.4. Пара клиент/сервер

11.6.9. Модель CLI-сервера

11.6.10. Модель интерфейсов на основе языков

11.7. Применение Unix-моделей проектирования интерфейсов

11.7.1. Модель многопараметрических программ

11.8. Использование Web-браузера в качестве универсального клиента

11.9. Молчание — золото

12 Оптимизация

12.1. Отказ от оптимизации

12.2. Измерения перед оптимизацией

12.3. Размер кода

12.4. Пропускная способность и задержка

12.4.1. Пакетные операции

12.4.2. Совмещение операций

12.4.3. Кэширование результатов операций

13 Сложность: просто, как только возможно, но не проще

13.1. Сложность

13.1.1. Три источника сложности

13.1.2. Компромиссы между сложностью интерфейса и реализации

13.1.3. Необходимая, необязательная и случайная сложность

13.1.4. Диаграмма видов сложности

13.1.5. Когда простоты не достаточно

13.2. Редакторы

13.2.1. ed

13.2.2. vi

13.2.3. Sam

13.2.4. Emacs

13.2.5. Wily

13.3. Необходимый и достаточный размер редактора

13.3.1. Идентификация проблем сложности

13.3.2. Компромиссы не действуют

13.3.3. Является ли Emacs доводом против Unix-традиции?

13.4. Необходимый размер программы

Часть III Реализация

14 Языки программирования: С или не С?

14.1. Многообразие языков в Unix

14.2. Доводы против С

14.3. Интерпретируемые языки и смешанные стратегии

14.4. Сравнение языков программирования

14.4.1. С

14.4.1.1. Учебный пример: fetchmail

14.4.2. С++

14.4.2.1. С++ учебный пример: инструментарий Qt

14.4.3. Shell

14.4.3.1. Учебный пример: xmlto

14.4.3.2. Учебный пример: Sorcery Linux

14.4.4. Perl

14.4.4.1. Небольшой учебный пример по Perl: blq

14.4.4.2. Большой учебный пример по Perl: keeper

14.4.5. Tel

14.4.5.1. Учебный пример: TkMan

14.4.5.2. Moodss: большой учебный пример по Tel

14.4.6. Python

14.4.6.1. Небольшой учебный пример по Python: imgsizer

14.4.6.2. Учебный пример по Python среднего размера: fetchmailconf

14.4.6.3. Большой учебный пример Python: PIL

14.4.7. Java

14.4.7.1. Учебный пример: FreeNet

14.4.8. Emacs Lisp

14.5. Тенденции будущего

14.6. Выбор Х-инструментария

15 Инструментальные средства: тактические приемы разработчика

15.1. Операционная система, дружественная к разработчику

15.2. Выбор редактора

15.2.1. Полезные сведения о vi

15.2.2. Полезные сведения о Emacs

15.2.3. "Антирелигиозный" выбор: использование обоих редакторов

15.3. Генераторы специализированного кода

15.3.1. уасс и lex

15.3.1.1. Учебный пример: грамматика fetchmailrc

15.3.2. Учебный пример: Glade

15.4. Утилита make: автоматизация процедур

15.4.1. Базовая теория make

15.4.2. Утилита make в разработке не на C/C++

15.4.2.1. Учебный пример: использование make для преобразования файла документации

15.4.3. Правила make

15.4.4. Генерация make-файлов

15.4.4.1. makedepend

15.4.4.2. Imake

15.4.4.3. autoconf

15.4.4.4. automake

15.5. Системы контроля версий

15.5.1. Для чего используется контроль версий

15.5.2. Контроль версий вручную

15.5.3 Автоматизированный контроль версий

15.5.4. Unix-инструменты для контроля версий

15.5.4.1. Source Code Control System (SCCS)

15.5.4.2. Revision Control System (RCS)

15.5.4.3. Concurrent Version System (CVS)

15.5.4.4. Другие системы контроля версий

15.6. Отладка времени выполнения

15.7. Профилирование

15.8. Комбинирование инструментов с Emacs

15.8.1. Emacs и make

15.8.2. Emacs и отладка во время выполнения

15.8.3. Emacs и контроль версий

15.8.4. Emacs и профилирование

15.8.5. Лучше, чем IDE

16 Повторное использование кода: не изобретая колесо

16.1. История случайного новичка

16.2. Прозрачность — ключ к повторному использованию кода

16.3. От повторного использования к открытому исходному коду

16.4. Оценка проектов с открытым исходным кодом

16.5. Поиск открытого исходного кода

16.6. Вопросы использования программ с открытым исходным кодом

16.7. Вопросы лицензирования

16.7.1. Что определяется как открытый исходный код

16.7.2. Стандартные лицензии на открытый исходный код

16.7.3. Когда потребуется адвокат

Часть IV Сообщество

17 Переносимость: переносимость программ и соблюдение стандартов

17.1. Эволюция С

17.1.1. Ранняя история С

17.1.2. Стандарты С

17.2. Стандарты Unix

17.2.1. Стандарты и Unix-войны

17.2.2. Влияние новых Unix-систем

17.2.3. Стандарты Unix в мире открытого исходного кода

17.3. IETF и процесс RFC-стандартизации

17.4. Спецификации — ДНК, код — РНК

17.5. Программирование, обеспечивающее переносимость

17.5.1. Переносимость и выбор языка

17.5.1.1. Переносимость С

17.5.1.2. Переносимость С++

17.5.1.3. Переносимость shell

17.5.1.4. Переносимость Perl

17.5.1.5. Переносимость Python

17.5.1.6. Переносимость Tel

17.5.1.7. Переносимость Java

17.5.1.8. Переносимость Emacs Lisp

17.5.2. Обход системных зависимостей

17.5.3. Инструменты, обеспечивающие переносимость

17.6. Интернационализация

17.7. Переносимость, открытые стандарты и открытый исходный код

18 Документация: объяснение кода в Web-сообществе

18.1. Концепции документации

18.2. Стиль Unix

18.2.1. Склонность к большим документам

18.2.2. Культурный стиль

Перейти на страницу:

Похожие книги

97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT