Читаем Искусство схемотехники. Том 1 (Изд.4-е) полностью

Упражнение 1.9. Для схемы, показанной на рис. 1.10, (Uвх = 30 В, R1 = R2 = 10 кОм. Требуется определить: а) выходное напряжение в отсутствие нагрузки (напряжение разомкнутой цепи); б) выходное напряжение при условии, что подключена нагрузка 10 кОм (представьте схему в виде делителя напряжения R2 и  объедините в один резистор); в) эквивалентную схему; г) выходное напряжение при том же условии, что и в п. б), но для эквивалентной схемы здесь придется иметь дело с делителем напряжения; ответ должен быть таким же, как в п. б); д) мощность, рассеиваемую каждым резистором. 

Эквивалентное сопротивление источника и нагрузка схемы. Как мы только что убедились, делитель напряжения, на который подается некоторое постоянное напряжение, эквивалентен некоторому источнику напряжения с последовательно подключенным к нему резистором; например, делитель напряжения 10 кОм-10 кОм, на который подается напряжение от идеальной батарейки напряжением 30 В, в точности эквивалентен идеальной батарейке напряжением 15 В с последовательно подключенным резистором с сопротивлением 5 кОм (рис. 1.11).

Рис. 1.11.

Подключение резистора в качестве нагрузки вызывает падение напряжения на выходе делителя, обусловленное наличием некоторого сопротивления источника (вспомним эквивалентное сопротивление для делителя напряжения, если его выход выступает в качестве источника напряжения). Очень часто это явление нежелательно. Один подход к решению проблемы создания «устойчивого» источника напряжения (называемого «устойчивым» в том смысле, что он не поддается действию нагрузки) состоит в использовании в делителе напряжения резисторов с малыми сопротивлениями. Иногда этот прямой подход оказывается полезным. Однако лучше всего для создания источника напряжения, или как его часто называют, источника питания, использовать активные компоненты, такие, как транзисторы или операционные усилители, которыми мы займемся в гл. 2–4. Этот подход позволяет создать источник напряжения, внутреннее сопротивление которого (или эквивалентное сопротивление) составит миллиомы (тысячные доли ома), при этом не требуются большие токи и не рассеивается значительная мощность, что характерно для низкоомного делителя напряжения с такими же рабочими характеристиками. Кроме того, в активном источнике питания не представляет труда регулировка выходного напряжения. Понятие эквивалентного внутреннего сопротивления применимо ко всем типам источников, а не только к батареям и делителям напряжения. Все источники сигналов (например, генераторы синусоидальных сигналов, усилители и измерительные приборы) обладают эквивалентным внутренним сопротивлением.

Подключение нагрузки, сопротивление которой меньше или даже сравнимо с внутренним сопротивлением, вызывает значительное уменьшение выходного параметра. Нежелательное уменьшение напряжения (или сигнала) разомкнутой цепи за счет подключения нагрузки называется «перегрузкой цепи». В связи с этим следует стремиться к тому, чтобы выполнялось условие Rн >> Rвнутр, так как высокоомная нагрузка оказывает небольшое ослабляющее влияние на источник (рис. 1.12); примеры тому вы встретите в последующих главах.

Рис. 1.12.Сопротивление нагрузки должно быть большим по сравнению с выходным сопротивлением для того, чтобы сигнал источника не ослаблялся ниже значения напряжения при разомкнутой цепи.

Условие высокоомности является обязательным для таких измерительных приборов, как вольтметры и осциллографы. (Есть и исключения из этого общего правила; например, когда речь пойдет о линиях передач на радиочастотах, вы узнаете, что следует «согласовывать импедансы» для предотвращения отражений и потерь энергии.)

Несколько слов о принятых выражениях: часто можно услышать «сопротивление со стороны входа делителя напряжения» или «нагрузка со стороны выхода составляет столько-то ом». Советуем принять эти обороты на вооружение, так как они в понятной форме указывают, где, по отношению к схеме, находится резистор.

Перейти на страницу:

Похожие книги