Читаем Искусство схемотехники. Том 1 (Изд.4-е) полностью

Наряду с характеристикой коэффициента передачи в частотной области важен и другой параметр, а именно сдвиг фазы выходного сигнала по отношению к входному. Другими словами, нас интересует комплексная частотная характеристика фильтра, которая обычно обозначается как H(s), где s = jω; s и Η — комплексные величины. Фазочастотная характеристика важна, поскольку сигнал, целиком расположенный по частоте в полосе пропускания, будет искажен, если время запаздывания при прохождении через фильтр не будет постоянным для различных частот.

Постоянство временной задержки (для всех частот) соответствует линейному возрастанию фазового сдвига в зависимости от частоты, поэтому термин фильтр с линейной фазочастотной характеристикой применяется к идеальному в этом отношении фильтру. На рис. 5.8 показаны типовые графики фазочастотной характеристики и амплитудно-частотной характеристики фильтра нижних частот, который явно не является линейно-фазовым фильтром. Графики фазочастотной характеристики лучше всего строить в линейном по частоте масштабе.



Рис. 5.8.Фазовая и амплитудно-частотная характеристики 8-полюсного фильтра Чебышева нижних частот. Размах пульсаций (неравномерность) 2 дБ.


Временная область. Свойства фильтров, как и любых других схем переменного тока, могут быть описаны также их параметрами во временнóй области, а именно временем нарастания, выбросом, пульсациями и временем установления. Эти свойства важны, в частности, там, где должны использоваться ступенчатые или импульсные сигналы. На рис. 5.9 показана типичная переходная характеристика фильтра нижних частот.



Рис. 5.9.


Здесь время нарастания представляет собой время, необходимое для достижения сигналом 90 % своего конечного значения, в то время как время установления — это время, необходимое для того, чтобы сигнал попал в некоторую окрестность конечного значения и там остался. Выброс и колебания описывают нежелательные свойства фильтра, смысл которых ясен из их названия.



5.05. Типы фильтров

Предположим, что требуется фильтр нижних частот с плоской характеристикой в полосе пропускания и резким переходом к полосе подавления. Окончательный же наклон характеристики в полосе задерживания всегда будет 6n дБ/октава, где n — число «полюсов». На каждый полюс необходим один конденсатор (или катушка индуктивности), поэтому требования к окончательной скорости спада частотной характеристики фильтра, грубо говоря, определяют его сложность.

Теперь предположим, что вы решили использовать 6-полюсный фильтр нижних частот. Вам гарантирован окончательный спад характеристики на высоких частотах 36 дБ/октава. В свою очередь теперь можно оптимизировать схему фильтра в смысле обеспечения максимально плоской характеристики в полосе пропускания за счет уменьшения крутизны перехода от полосы пропускания к полосе задерживания. С другой стороны, допуская некоторую неравномерность характеристики в полосе пропускания, можно добиться более крутого перехода от полосы пропускания к полосе задерживания. Третий критерий, который может оказаться важным, описывает способность фильтра пропускать сигналы со спектром, лежащим в полосе пропускания, без искажений их формы, вызываемых фазовыми сдвигами. Можно также интересоваться временем нарастания, выбросом и временем установления.

Известны методы проектирования фильтров, пригодные для оптимизации любой из этих характеристик или их комбинаций. Действительно разумный выбор фильтра происходит не так, как описано выше; как правило, сначала задаются требуемая равномерность характеристики в полосе пропускания и необходимое затухание на некоторой частоте вне полосы пропускания и другие параметры. После этого выбирается наиболее подходящая схема с количеством полюсов, достаточным для того, чтобы удовлетворялись все эти требования. В следующих нескольких разделах будут рассмотрены три наиболее популярных типа фильтров, а именно фильтр Баттерворта (максимально плоская характеристика в полосе пропускания), фильтр Чебышева (наиболее крутой переход от полосы пропускания к полосе подавления) и фильтр Бесселя (максимально плоская характеристика времени запаздывания). Любой из этих типов фильтров можно реализовать с помощью различных схем фильтров; некоторые из них мы обсудим позже. Все они равным образом годятся для построения фильтров нижних и верхних частот и полосовых фильтров.

Фильтры Баттерворта и Чебышева. Фильтр Баттерворта обеспечивает наиболее плоскую характеристику в полосе пропускания, что достигается ценой плавности характеристики в переходной области, т. е. между полосами пропускания и задерживания. Как будет показано дальше, у него также плохая фазочастотная характеристика. Его амплитудно-частотная характеристика задается следующей формулой:

Перейти на страницу:

Похожие книги