Определение напряжения и тока с помощью комплексных чисел. Только что вы убедились в том, что в цепи переменного тока, работающей с синусоидальным сигналом некоторой частоты, возможен сдвиг по фазе между напряжением и током. Тем не менее если схема содержит только
Очевидно, что для того, чтобы определить ток в какой-либо точке схемы, недостаточно задать одно значение-дело в том, что ток характеризуется как амплитудой, так и сдвигом фазы.
Конечно, можно определять амплитуды и фазовые сдвиги напряжений и токов явно, например U(t) = 23,7·sin(377·t + 0,38), но оказывается, что проще это делать с помощью комплексных чисел. Вместо того чтобы тратить время и силы на сложение и вычитание синусоидальных функций, можно легко и просто складывать и вычитать комплексные числа. Так как действующие значения напряжения и тока представляют собой реальные количественные величины, изменяющиеся во времени, следует вывести правило для перевода реальных количественных величин в комплексное представление и наоборот. Напомним еще раз, что мы имеем дело с частотой синусоидального колебания ω, и сформулируем следующие правила:
1. Напряжение и ток
Напряжение
2. Для того чтобы получить выражение для
(В электронике символ
U(t) = Re(U·ejωt) = Re(U)·cos ωt — Im(U)·sin ωt,
Ι(t) = Re(I·ejωt) = Re(I)·cos ωt — Im(I)·sin ωt,
Например, комплексному напряжению U = 5j соответствует реальное напряжение
U(t) = Re[5j·cos ωt + 5j(j)·sin ωt] = 5sin ωt B
Реактивное сопротивление конденсаторов и индуктивностей. Принятое соглашение позволяет применять закон Ома для схем, содержащих как резисторы, так и конденсаторы, и индуктивности.
Определим реактивное сопротивление конденсатора и индуктивности. Нам известно, U(t) = Re(U0·ejωt). Так как в случае конденсатора справедливо выражение I = C(dU/dt), получим
Ι(t) = — U0Cω·sin ωt = Re[U0·ejωt/(-j/ωC)] = Re(U0·ejωt/XC),
т. е. для конденсатора
XC = — j/ωC,
XL = jωL.
Схема, содержащая только конденсаторы и индуктивности, всегда обладает мнимым импедансом; это значит, что напряжение и ток всегда сдвинуты по фазе друг относительно друга на 90°- схема абсолютно реактивна. Если в схеме присутствуют резисторы, то импеданс имеет и действительную часть. Под реактивным сопротивлением подразумевается при этом только мнимая часть импеданса.
Обобщенный закон Ома. Соглашения, принятые для представления напряжений и токов, позволяют записать закон Ома в следующей простой форме:
I = U/Z, U = I·Z, означающей, что напряжение
Z = Z1 + Z2 + Z3 +…
(для последовательного соединения),
И в заключение приведем формулы для определения импеданса резисторов, конденсаторов и индуктивностей:
ZR = R (резистор),
ZC = —j/ωC (конденсатор),
ZL= jωL (индуктивность).