Читаем Искусство схемотехники. Том 2 (Изд.4-е) полностью

Понятия точность и динамический диапазон легко спутать, поскольку иногда одна и та же аппаратура используется для достижения и того, и другого. Может быть, разницу можно лучше всего пояснить на ряде примеров: у 5-разрядного цифрового многошкального прибора — прецизионная точность; измерения напряжения им делаются с точностью 0,01 % и выше. Такое устройство также имеет широкий динамический диапазон — от миливольт до вольт на одной и той же шкале. Точный десятичный усилитель (например, с коэффициентом усиления, выбираемым из ряда значения 1, 10, 100) и прецизионный опорный источник напряжения могут иметь достаточную точность, но не обязательно широкий динамический диапазон. Примером устройства с широким динамическим диапазоном, но скромной точностью служит шестидекадный логарифмический усилитель (ЛУ), построенный на тщательно подогнанных ОУ, но с применением элементов, имеющих точность всего лишь 5 %; даже при использовании более точных элементов ЛУ может иметь ограниченную точность за счет несоответствия при крайних значениях тока характеристик используемого для преобразования транзисторного перехода логарифмической зависимости. Другой пример устройства с широким динамическим диапазоном (диапазон входного тока более чем 10000:1) при весьма скромной точности 1 % — это кулонометр, описанный в разд. 9.26. Вначале он был спроектирован для определения суммарного заряда электрохимического элемента — величины, которую достаточно знать с точностью 5 %, но которая образуется в результате действия тока, изменяющегося в широком диапазоне. Общее свойство устройств с широким динамическим диапазоном это то, что входное смещение должно быть тщательно отрегулировано для обеспечения пропорциональности при уровне сигнала, близком к нулю. При проектировании прецизионной аппаратуры это также необходимо, но там для удержания суммарной погрешности в рамках так называемого бюджета погрешности требуются также прецизионные элементы, устойчивые генераторы опорных напряжений, и внимание ко всем возможным источникам погрешностей.

7.02. Бюджет погрешностей схемы

Несколько слов о бюджете погрешности. Начинающие разработчики часто попадают в ловушку, считая, что несколько стратегически правильно расположенных прецизионных элементов дадут устройство с прецизионными параметрами. В каких-то редких случаях, может быть, так и получится. Но даже схема, битком набитая резисторами 0,01 % и дорогостоящими ОУ, не оправдывает ваших ожиданий, если на каком-то участке схемы смещение выходного тока, умноженное на сопротивление источника, даст погрешность смещения напряжения, например 10 мВ. Подобного рода погрешности встречаются почти в любой схеме, и важно их выявить, хотя бы для того, чтобы найти место, где требуется устройство с лучшими параметрами или где нужно изменить схему. Такой подсчет бюджета погрешности рационализирует проектирование, во многих случаях позволяет обойтись недорогими элементами и точно оценить характеристики схемы.

7.03. Пример схемы: прецизионный усилитель с автоматическим выбором нуля

Для иллюстрации предшествующих рассуждений мы спроектировали схему прецизионного декадного усилителя с автоматическим поиском начального уровня. Такое устройство позволяет зафиксировать некоторое значение входного сигнала и усиливать его последующие отклонения от этого уровня с коэффициентом, точно равным 10, 100 или 1000. Это окажется весьма удобным в эксперименте, при котором измеряется малое отклонение какой-нибудь величины (например, светопроницаемости или поглощения радиочастоты) при изменении условий эксперимента. Обычно трудно точно измерить малое изменение большого сигнала постоянного тока вследствие дрейфа и неустойчивости усилителя. В таком случае нужна схема с предельной прецизионностью и устойчивостью. Мы опишем методы и ошибки, которые мы допускали при проектировании этой конкретной схемы, в рамках общего описания процесса прецизионного проектирования и таким образом безболезненно изложим то, что иначе могло бы стать утомительным поучением. Одно предварительное замечание: заманчивой альтернативой к этой чисто аналоговой схеме могла бы стать цифровая аппаратура. (В следующих главах следите за захватывающими открытиями!). Проектируемая схема изображена на рис. 7.1.

Рис. 7.1.Лабораторный усилитель постоянного тока с автоподстройкой нуля.

Перейти на страницу:

Похожие книги

100 способов избежать аварии. Спецкурс для водителей категории В
100 способов избежать аварии. Спецкурс для водителей категории В

Сколько раз, сидя перед экраном телевизора, вы вздрагивали, услышав визг тормозов? К сожалению, со стороны пассажирского сиденья он звучит еще страшнее. Все мы прекрасно знаем, что, садясь за руль, мы несем ответственность не только за себя и своих спутников, но и за всех участников дорожного движения.Так как же вести себя, если вы понимаете, что ситуация вышла из-под контроля и велика вероятность аварии?Александр Каминский, изучив часто случающиеся аварии, на страницах своей книги поделился опытом и секретами, как их избежать, а также подробно описал экстренные действия во время нештатных ситуаций.Книга написана живым и доступным языком и предназначена для широкого круга автовладельцев с различным стажем вождения. Желаем вам приятного чтения и надеемся, что чужой опыт, описанный в этой интересной книге, никогда не станет вашим!

Александр Юрьевич Каминский

Автомобили и ПДД / Техника