Это может оказаться неважным при намерении просто представить широкую картину происходящего в стране, когда опрос масштабен и надежен. Но давайте возьмем такой пример: вы услышали, что опрошены только 100 человек, из которых семь сказали, что не имеют работы. Оценка составляет 7 %, но, вероятно, вряд ли вы сочли бы ее надежной и были бы счастливы, если бы она описывала всю совокупность. А если бы в опросе участвовала 1000 человек? А 100 тысяч? При достаточном масштабе опроса вы, возможно, увереннее согласитесь с тем, что выборочная оценка – достаточно хорошая характеристика всей совокупности. Размер выборки должен влиять на вашу уверенность в оценке, а чтобы делать статистические выводы, необходимо знать, насколько выборочная характеристика может отличаться от настоящей.
Давайте вернемся к опросу Natsal, описанному в главе 2, в котором участников спрашивали, сколько сексуальных партнеров у них было в течение жизни. В качестве респондентов было привлечено 1125 женщин и 806 мужчин в возрасте 35–44 лет, так что это был солидный опрос. В табл. 2.2 представлены вычисленные выборочные характеристики, например медиана – 8 для мужчин и 5 для женщин. Поскольку мы знаем, что этот опрос базировался на правильной случайной выборке, вполне разумно предположить, что изучаемая совокупность соответствует целевой совокупности, то есть взрослому населению Великобритании. Главный вопрос здесь таков: насколько близки найденные статистики к тому, что мы обнаружили бы, опросив всех жителей страны?
В качестве иллюстрации того, как точность статистики зависит от размера выборки, представим, что мужчины в нашем опросе фактически представляют собой всю генеральную совокупность, которая нас интересует. Их ответы приведены на нижней диаграмме рис. 7.1. Для иллюстрации извлечем последовательные случайные выборки из общей совокупности из 760 участников: сначала 10, затем 50, а потом 200 человек. Распределение данных для трех выборок показано на рис. 7.1. Ясно видно, что маленькие выборки «ухабистее», поскольку они чувствительны к отдельным точкам. Сводные характеристики этих постепенно увеличивающихся выборок представлены в табл. 7.1. В первой выборке из 10 человек наблюдается большое количество партнеров (среднее 8,4), но по мере роста выборки эта величина постепенно уменьшается, приближаясь к характеристике всей группы из 760 человек.
Рис. 7.1
Нижняя диаграмма отображает распределение ответов для всех 760 мужчин в опросе. Из этой группы случайным образом последовательно выбираются 10, 50 и 200 человек. Соответствующие распределения построены на первых трех диаграммах. У меньших выборок видны значительные разбросы, но постепенно форма распределения приближается к распределению всей группы из 760 мужчин. Не показаны значения свыше 50 партнеров
Таблица 7.1
Сводные статистические данные о количестве сексуальных партнеров за всю жизнь у мужчин в возрасте 35–44 лет, которое они указывали в исследовании Natsal 3 (случайные выборки и характеристики всей группы из 760 мужчин)
А теперь вернемся к фактической задаче: что мы можем сказать о среднем и медианном числе партнеров во всей изучаемой совокупности мужчин в возрасте 35–44 лет, основываясь на реальных выборках мужчин, показанных на рис. 7.1? Мы могли бы оценить эти параметры всей популяции по выборочной статистике каждой группы, представленной в табл. 7.1, предполагая, что статистики на основе б
Вот здесь мы подошли к критическому шагу. Чтобы понять, насколько точными могут быть такие характеристики, нам нужно подумать, как эти статистики могут измениться, если мы (в воображении) неоднократно повторим процесс составления выборки. Иначе говоря, если бы мы раз за разом формировали выборки из 760 британцев, насколько сильно менялись бы их статистики?
Если бы мы знали, как сильно они будут варьироваться, это помогло бы нам понять, насколько точна наша фактическая оценка. К сожалению, определить точный разброс оценок мы могли бы только в случае, если бы точно знали информацию о всей генеральной совокупности. Но как раз этого мы и не знаем.
Есть два способа выбраться из этого круга. Первый – сделать какие-то математические предположения о форме исходного распределения в генеральной совокупности, а затем с помощью методов теории вероятностей определить ожидаемый разброс для нашей оценки, а потом и то, чего можно ожидать для разницы между средним в выборке и средним во всей совокупности. Это традиционный способ, который включают в учебники по статистике; мы рассмотрим в главе 9, как он работает.