Выводы
• Алгоритмы, построенные на основе данных, можно использовать в различных технологических приложениях для классификации и прогнозирования.
• Важно остерегаться переобучения алгоритма на тренировочных данных, когда, по сути, происходит подгонка не к сигналу, а к шуму.
• Алгоритмы можно оценивать по точности классификации, способности различать отдельные группы, а также общей точности прогнозирования.
• Сложным алгоритмам может не хватать прозрачности, поэтому, возможно, разумнее потерять немного в точности ради понимания.
• Использование алгоритмов и искусственного интеллекта сопряжено со многими трудностями, поэтому важно осознавать как мощь, так и ограничения методов машинного обучения.
Глава 7. Насколько мы можем быть уверены в происходящем? Оценки и интервалы
Сколько в Великобритании безработных?
В январе 2018 года новостной сайт «Би-би-си» объявил, что за три месяца до прошедшего ноября «уровень безработицы в Соединенном Королевстве снизился на 3 тысяч и составил 1,44 миллиона человек». О причинах такого сокращения много спорили, но, как ни странно, никто не усомнился в точности этой цифры. Однако при тщательной проверке Бюро национальной статистики Великобритании обнаружило, что погрешность этой величины составляет ±77 000. Иными словами, истинное изменение могло колебаться от снижения на 80 тысяч до увеличения на 74 тысячи. Таким образом, хотя журналисты и политики считали, что заявленное сокращение касается всей страны, фактически это была неточная оценка, основанная на опросе примерно 100 тысяч человек[151]. Аналогично, когда Бюро статистики труда США сообщило о росте безработицы среди гражданского населения на 108 тысяч человек между декабрем 2017 и январем 2018 года, эта оценка опиралась на выборку примерно из 60 тысяч домохозяйств, а погрешность (которую опять же трудно определить) составляла ±300 000[152],[153].
Осознавать неопределенность крайне важно. Сделать какую-нибудь оценку способен кто угодно, но умение реалистично определить ее возможную погрешность – важнейший компонент статистики. Даже притом, что это затрагивает некоторые сложные понятия.
Предположим, мы собрали какие-то точные данные, возможно, с помощью хорошо спланированного опроса, и хотим обобщить результаты на изучаемую совокупность. Если мы проявляли осторожность и избегали внутренних смещений (скажем, обеспечив случайную выборку), то можем ожидать, что характеристики выборки будут близки к соответствующим характеристикам изучаемой совокупности.
Этот важный момент стоит уточнить. В хорошем исследовании мы ожидаем, что выборочное среднее будет близко к среднему всей совокупности, интерквартильный размах в выборке будет близок к интерквартильному размаху всей совокупности и так далее. В главе 3 мы рассматривали идею характеристик всей совокупности на примере данных о весе новорожденных, где назвали выборочное среднее
Часто сообщают только итоговую статистику, и во многих случаях этого может быть достаточно. Например, мы видели, что большинство людей не знают, что показатели безработицы в США и Соединенном Королевстве основаны не на полном подсчете всех официально зарегистрированных безработных, а на масштабных опросах. Если такой опрос установил, что 7 % людей в выборке безработные, то национальные агентства и СМИ обычно преподносят это как факт, что 7 % всего населения страны безработные, вместо того чтобы признать, что 7 % – это всего лишь оценка. Выражаясь научно более точно, они просто путают выборочное среднее и среднее во всей совокупности.