Все это указывает на то, что количественная эффективность может быть не единственным критерием алгоритма: как только она становится «достаточно хорошей», порой куда разумнее отказаться от попыток дальнейших небольших увеличений ради сохранения простоты.
Так кто оказался самым везучим на «Титанике»?
Таким выжившим можно считать человека с самым высоким показателем Бриера при усреднении по всем алгоритмам. Им стал Карл Даль, 45-летний норвежско-австралийский столяр[142], путешествовавший в одиночку в третьем классе и заплативший за билет столько же, сколько и Фрэнсис Сомертон; два алгоритма даже дали ему 0 % шансов на выживание. Попав в ледяную воду, он забрался на спасательную шлюпку № 15, несмотря на то что некоторые на шлюпке пытались столкнуть его обратно. Возможно, он просто применил силу.
Это резко контрастирует с судьбой Фрэнсиса Сомертона из Илфракомба, чья смерть, как мы видели, вполне вписывается в общую закономерность. Его жене Ханне Сомертон досталось всего 5 фунтов (меньше, чем Фрэнсис потратил на билет), а не успешный муж в Америке.
Проблемы алгоритмов
Алгоритмы способны демонстрировать замечательную эффективность, однако по мере увеличения их роли в обществе актуализируются и их потенциальные проблемы. На данный момент можно выделить четыре основные.
• Недостаток робастности (устойчивости). Алгоритмы создаются по связям, и в случае непонимания лежащих в их основе процессов они могут оказаться слишком чувствительны к изменениям. Даже если нас волнует исключительно точность, а не научная истина, нам по-прежнему нужно помнить базовые принципы цикла PPDAC и этапы перехода от данных, полученных из какой-то выборки, к утверждениям, касающимся всей целевой совокупности. Для предсказательной аналитики эта целевая совокупность включает будущие случаи, и если все остается по-прежнему, то алгоритмы, сконструированные по прошлым данным, должны работать хорошо. Но порой мир меняется. Мы уже отмечали провал алгоритмов при изменениях в финансовом мире 2007–2008 годов. Еще один яркий пример – попытка компании Google предсказать тенденции распространения вируса гриппа на основании закономерностей в поисковых запросах пользователей. Сначала все работало хорошо, но в 2013 году алгоритм начал резко завышать прогнозы для гриппа. Одно из объяснений – изменения, внесенные Google в поисковую систему, могли привести к большему количеству ключевых слов, указывавших на грипп.
• Отсутствие учета статистического разброса. Автоматическое ранжирование на основе ограниченного объема данных будет ненадежным. В США учителей оценивали и наказывали в соответствии с коэффициентом роста знаний их учеников за год, что проявлялось в невероятно резких изменениях в годовой оценке учителей: в Вирджинии, например, у четверти учителей фиксируется разница более чем в 40 баллов (по шкале 1–100 баллов) от года к году[143]. Но как такое может быть, ведь хорошие учителя обычно хороши и в этом году, и в следующем.
• Неявное смещение. Повторюсь, алгоритмы основаны на связях, а это может означать, что в итоге они используют признаки, которые мы, как правило, считаем не имеющими отношения к рассматриваемой задаче. Например, когда один алгоритм машинного зрения обучали отличать изображения хаски от немецких овчарок, он был эффективен, пока его не применили к хаски, которых содержали в квартирах в качестве домашних питомцев, – оказалось, что его эффективность основывалась на идентификации снега на заднем плане[144]. Менее тривиальные примеры включают алгоритм для определения красоты, которому не нравится темная кожа, и еще один алгоритм, идентифицирующий чернокожих людей как горилл. Некоторые алгоритмы способны серьезно повлиять на жизнь человека – например, присваивающие кредитный рейтинг или решающие вопросы страхования. Можно запретить использование расы в качестве одной из предикторных переменных, но применение почтовых индексов для указания местожительства может быть не менее мощным индикатором расы.