Читаем Исследование переменных параметров Хаббла полностью

Для простоты сформируем этот параметр Had из прямолинейных отрезков, выбрав 14 интервалов. Такой способ формирования параметра позволяет подогнать его форму под любой вид диаграммы Хаббла. В результате удалось получить диаграмму, соответствующую утверждению об ускоренном расширении Вселенной: тусклые дальние сверхновые и более яркие – сверхдальние. Однако и в этот раз мы обнаруживаем, что сам параметр Хаббла соответствует противоположному характеру расширения Вселенной – замедленному. Вселенная сначала расширяется ускоренно, затем замедленно. Буквально это означает, что в наши дни согласно наблюдениям за тусклыми сверхновыми мы получаем замедленное расширение Вселенной.

Рис.11.14. При ускоренно-замедленном расширении Вселенной с параметром Had дальние сверхновые видны более тусклыми, а сверхдальние – более яркими. Параметр представлен в виде ломаной линии

Для справки и наглядности приводим полный набор графиков движения самой дальней сверхновой в такой Вселенной, который имеет вид:

Рис.11.15. Графики движения самой дальней видимой сверхновой в замедленной Вселенной с параметром Had

Определённым недостатком такого построения параметра Хаббла является его статичность. Изменить что-либо в нём непросто – нужно менять все его точки, причём соблюдая результирующую плавность ломаной кривой. Кроме того его ломаный вид и острый пик вызывают некоторое недоверие, сможем ли мы получить похожий результат при других, гладких экстремумах. Поэтому проектируем такой же вид параметра, состоящий из гладких кривых.

В результате мы получили параметрическую кривую с изменяемыми координатами пика и кривизной роста – спада. Кривая сформирована из трёх функций. Начальный участок – парабола переменной степени n = 1,5…5; средний участок – перевёрнутая квадратичная парабола; третий – гипербола переменной степени n = 2…12.

Перебирая регулировочные коэффициенты, формируем требуемый параметр Хаббла Hda – вкладка к рис.11.16, максимально соответствующий модели тусклых дальних сверхновых, и более ярких – сверхдальних.

Рис.11.16. При ускоренно-замедленном расширении Вселенной с параметром Had дальние сверхновые видны более тусклыми, а сверхдальние – более яркими. Параметр представлен в виде гладкой кривой

Как видим на рисунке, параметр Хаббла Had соответствует замедленно расширяющейся Вселенной, но диаграмма Хаббла, согласно модели "тусклый – дальний" явно трактуется как ускоренно расширяющаяся Вселенная.

Рис.11.17. Графики движения самой дальней видимой сверхновой в замедленной Вселенной с параметром Had в виде гладкой кривой

Это несоответствие вновь говорит о том, что пониженная яркость дальних сверхновых не может служить основанием для заключения об ускоренном расширении Вселенной. Этот рисунок без комментариев мы приводим также для справки и наглядности: полный набор графиков движения самой дальней наблюдаемой сверхновой во Вселенной со сформированным параметром Хаббла Had.

<p>4. Спорные выводы об ускоренном расширении</p>

Поскольку параметр Хаббла Hd также имеет настроечные величины для пика и минимума, мы проделали такую же процедуру подбора и с ним. Оказалось, что его регулировкой наугад можно получить вид диаграммы Хаббла, довольно близко приближающийся к виду диаграммы ускоренного расширения Вселенной, рис.11.18. Отметим, что правильнее было бы параметр Хаббла в этом случае именовать Hada.

Рис.11.18. При замедленно-ускоренном расширении Вселенной с параметром Had дальние сверхновые видны более тусклыми, а сверхдальние – более яркими

Единственным, неуверенно слабым местом этой диаграммы является участок ближних сверхновых. Хотя и очень слабо, но можно заметить их некоторую повышенную яркость по отношению к стандартной диаграмме Хаббла. Лучше всего это заметно на увеличенном фрагменте диаграммы:

Рис.11.19. Увеличенный фрагмент диаграммы для замедленно-ускоренного расширения Вселенной с параметром Hda. Ближние сверхновые видны с повышенной яркостью.

Хотя и на пределе точности, но все-таки заметно, что ближние сверхновые при действительно ускоренном расширении Вселенной видны более яркими, чем в стандартной Вселенной, равномерно расширяющейся с параметром Хаббла H0. Отметим, что на диаграмме Вселенной с параметром Хаббла Had такой эффект определённо отсутствует:

Рис.11.20. Увеличенный фрагмент диаграммы для ускоренно – замедленного расширения Вселенной с гладким параметром Had. Яркость ближних сверхновых не превышает классических значений для Вселенной с параметром H0.

Как видно на рисунке, ближние сверхновые в такой Вселенной всегда не ярче, они заметно дальше сверхновых в стандартной Вселенной с H0.

В заключение рассмотрим ещё один вариант. Каким должен быть параметр Хаббла, чтобы наблюдаемая диаграмма выглядела классически – прямолинейной, с наклоном, соответствующим параметру Хаббла H0. Как оказалось, этому условию отвечает стационарная Вселенная, расширение в которой началось буквально вчера (штриховая линия Hs) – рис.11.21.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика