Для простоты сформируем этот параметр Had из прямолинейных отрезков, выбрав 14 интервалов. Такой способ формирования параметра позволяет подогнать его форму под любой вид диаграммы Хаббла. В результате удалось получить диаграмму, соответствующую утверждению об ускоренном расширении Вселенной: тусклые дальние сверхновые и более яркие – сверхдальние. Однако и в этот раз мы обнаруживаем, что сам параметр Хаббла соответствует противоположному характеру расширения Вселенной – замедленному. Вселенная сначала расширяется ускоренно, затем замедленно. Буквально это означает, что в наши дни согласно наблюдениям за тусклыми сверхновыми мы получаем замедленное расширение Вселенной.
Рис.11.14. При ускоренно-замедленном расширении Вселенной с параметром Had дальние сверхновые видны более тусклыми, а сверхдальние – более яркими. Параметр представлен в виде ломаной линии
Для справки и наглядности приводим полный набор графиков движения самой дальней сверхновой в такой Вселенной, который имеет вид:
Рис.11.15. Графики движения самой дальней видимой сверхновой в замедленной Вселенной с параметром Had
Определённым недостатком такого построения параметра Хаббла является его статичность. Изменить что-либо в нём непросто – нужно менять все его точки, причём соблюдая результирующую плавность ломаной кривой. Кроме того его ломаный вид и острый пик вызывают некоторое недоверие, сможем ли мы получить похожий результат при других, гладких экстремумах. Поэтому проектируем такой же вид параметра, состоящий из гладких кривых.
В результате мы получили параметрическую кривую с изменяемыми координатами пика и кривизной роста – спада. Кривая сформирована из трёх функций. Начальный участок – парабола переменной степени n = 1,5…5; средний участок – перевёрнутая квадратичная парабола; третий – гипербола переменной степени n = 2…12.
Перебирая регулировочные коэффициенты, формируем требуемый параметр Хаббла Hda – вкладка к рис.11.16, максимально соответствующий модели тусклых дальних сверхновых, и более ярких – сверхдальних.
Рис.11.16. При ускоренно-замедленном расширении Вселенной с параметром Had дальние сверхновые видны более тусклыми, а сверхдальние – более яркими. Параметр представлен в виде гладкой кривой
Как видим на рисунке, параметр Хаббла Had соответствует
Рис.11.17. Графики движения самой дальней видимой сверхновой в замедленной Вселенной с параметром Had в виде гладкой кривой
Это несоответствие вновь говорит о том, что пониженная яркость дальних сверхновых не может служить основанием для заключения об
4. Спорные выводы об ускоренном расширении
Поскольку параметр Хаббла Hd также имеет настроечные величины для пика и минимума, мы проделали такую же процедуру подбора и с ним. Оказалось, что его регулировкой наугад можно получить вид диаграммы Хаббла, довольно близко приближающийся к виду диаграммы ускоренного расширения Вселенной, рис.11.18. Отметим, что правильнее было бы параметр Хаббла в этом случае именовать Hada.
Рис.11.18. При замедленно-ускоренном расширении Вселенной с параметром Had дальние сверхновые видны более тусклыми, а сверхдальние – более яркими
Единственным, неуверенно слабым местом этой диаграммы является участок ближних сверхновых. Хотя и очень слабо, но можно заметить их некоторую
Рис.11.19. Увеличенный фрагмент диаграммы для замедленно-ускоренного расширения Вселенной с параметром Hda. Ближние сверхновые видны с повышенной яркостью.
Хотя и на пределе точности, но все-таки заметно, что ближние сверхновые при действительно ускоренном расширении Вселенной видны более яркими, чем в стандартной Вселенной, равномерно расширяющейся с параметром Хаббла H0. Отметим, что на диаграмме Вселенной с параметром Хаббла Had такой эффект определённо отсутствует:
Рис.11.20. Увеличенный фрагмент диаграммы для ускоренно – замедленного расширения Вселенной с гладким параметром Had. Яркость ближних сверхновых не превышает классических значений для Вселенной с параметром H0.
Как видно на рисунке, ближние сверхновые в такой Вселенной всегда не ярче, они заметно дальше сверхновых в стандартной Вселенной с H0.
В заключение рассмотрим ещё один вариант. Каким должен быть параметр Хаббла, чтобы наблюдаемая диаграмма выглядела классически – прямолинейной, с наклоном, соответствующим параметру Хаббла H0. Как оказалось, этому условию отвечает