Читаем Исследование переменных параметров Хаббла полностью

Получается, что самая дальняя сверхновая видна на большем удалении, чем даже она находится на самом деле. Рассмотрев сверхновые с начальной удалённостью 10, но в момент вспышки находящиеся на разных удалённостях от Земли, получаем для них ориентировочно, "на глазок" следующий график значений действительной, реально наблюдаемой удалённости:

Рис.11.11. График реальной удалённости сверхновой с учётом времени в пути света от вспышки

Чем дальше в прошлом произошла вспышка сверхновой (вправо, время вспышки от наших дней), тем она бледнее. Этот график построен на основе графиков рис.11.10. Из использованного для построений выражения:

можно определить и величину коэффициента умножения, коэффициента поперечного хаббловского растяжения пространства:

Максимально возможное значение коэффициента, являющегося коэффициентом увеличения удалённости kR = r14/r0 в зависимости от r0 и r14 удобно определить по рисункам рис.11.9 и рис.11.10.

Замечаем, что максимальное значение этого коэффициента зависит только от параметра Хаббла. Коэффициент изменяется от 1 (в наши дни) до максимального значения (в прошлом, 14 млрд. лет назад). Для разных параметров Хаббла, рассмотренных в наших вычислениях, коэффициенты kR имеют максимальные значения:

Для сверхновых, вспыхнувших в более позднее время, этот коэффициент уменьшается до единицы в соответствии с законом изменения параметра Хаббла. Обнаруживаем интересную закономерность. Сильнее всего свет дальних сверхновых ослабляется во Вселенной, расширяющейся замедленно, а слабее всего – в ускоряющейся Вселенной.

Параметры H(t) представлены у нас графически и аналитически, поэтому мы можем вычислить максимальные значения kR для Ho, Hd и Ha также и интегрированием соответствующих функций. Например, для Hd:

Ожидаем, что обнаруженное соотношение коэффициентов приведёт к интересным следствиям. Для следующих построений используем параметры Хаббла, представленные на врезке к следующему рисунку. Используя их, строим диаграммы Хаббла, учитывающие коэффициент kR для поперечного хаббловского расширения светового потока:

Рис.11.12. Наблюдаемые диаграммы Хаббла с учётом времени в пути света от вспышки сверхновой

В первую очередь на рисунке нас интересует параметр Хаббла Hda, соответствующий принятой модели расширения Вселенной – замедленно, затем ускоренно. При его функциональном проектировании мы исходили из достаточно разумного предположения, что в начальный момент времени этот параметр был равен нулю, после чего он резко увеличился до своего максимального значения, условно через 1 млрд. лет. Далее он уменьшался до момента времени t = 8 млрд. лет, после чего начал расти вплоть до наших дней. Максимальное и минимальное значение параметра – условные.

Обнаруживаем, что, действительно, результат оказался, по меньшей мере, странным. С таким параметром Hda мы не смогли получить диаграмму Хаббла, соответствующую ускоренному расширению. На рис.11.12 видим, что с параметром Hda дальние сверхновые видны более яркими, а сверхдальние, наоборот, менее яркие. Сам параметр Hda определённо соответствует замедленно – ускоренно расширяющейся Вселенной, но производная от него диаграмма Хаббла явно демонстрирует замедленное расширение, если использовать модель "дальний – тусклый". Буквально это означает, что такая модель не является показателем ускоренного расширения.

Но, возможно, другая форма параметра Hda подтвердит эту модель? Этот параметр Хаббла мы спроектировали параметрическим, то есть, его форму мы можем легко изменить, меняя его четыре настроечных параметра: пик и его время и минимум и его время. Простым подбором этих параметров, наугад пытаемся получить такую его зависимость от времени, чтобы характер Hda изменился на противоположный, на ускоренно – замедленный параметр Had, приводящий к известной диаграмме Хаббла, когда дальние сверхновые выглядят более тусклыми, а сверхдальние – более яркими, чем с параметром Хаббла H0.

Такая корректировка прошла успешно и мы получили требуемый инверсный параметр Hda. Строим диаграмму Хаббла на его основе и обнаруживаем, что с такой зависимостью мы получаем известное соотношение: дальние сверхновые теперь видны более тусклыми, а сверхдальние, напротив, со временем замедляют скорость своего разбегания, рис.11.13.

Рис.11.13. Только при ускоренно-замедленном расширении Вселенной с параметром Had дальние сверхновые видны более тусклыми, а сверхдальние – более яркими

Падение параметра Had происходит по выпуклой параболе, что приводит к его резкому уменьшению в наши дни. Предполагаем, что более естественным было бы его падение по экспоненте или гиперболе. Наш регулируемый параметр Hda ~ Had не позволяет скорректировать этот участок, поскольку он функционально задан параболой.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика