Читаем Истина и красота. Всемирная история симметрии. полностью

Эта задача оказалась безнадежно сложной — теперь мы знаем, что скорее всего у нее просто нет внятного ответа в том смысле, что нет простой конструкции, которая произвела бы все алгебры Ли в рамках единообразной и прозрачной процедуры. Поэтому Киллингу пришлось согласиться на нечто менее амбициозное: описать основные «кирпичики», из которых можно собрать все алгебры Ли. Это несколько похоже на желание описать все возможные архитектурные стили, но придерживаться при этом некоторого списка из допустимых форм и размеров кирпича.

Эти «кирпичики» известны как простыеалгебры Ли. Они выделены свойствами, очень похожими на идею Галуа о простой группе — группе без нормальных подгрупп, не считая тривиальных. На самом деле простые группы Ли имеют простые алгебры Ли, и обратное тоже почти верно. Потрясающе, что Киллинг преуспел в перечислении всех возможных простых алгебр Ли. Математики называют подобные теоремы классификацией.

В глазах Киллинга эта классификация была предельной версией чего-то гораздо более общего, и его огорчал ряд ограничительных предположений, которые ему пришлось сделать, чтобы добиться хоть какого-то результата. Особенно ему докучала необходимость предполагать простоту, что заставило его перейти к алгебрам Ли над комплексными числами, а не над вещественными. Первые ведут себя лучше, но менее прямым образом связаны с геометрическими проблемами, владевшими воображением Киллинга. Из-за этих, им же наложенных, ограничений он не считал, что его работа заслуживает опубликования.

Ему удалось установить контакт с Ли, который, впрочем, оказался не слишком плодотворным. Сначала Киллинг написал Клейну, который свел его с помощником Ли Фридрихом Энгелем, в то время работавшим в Христиании. Киллинг и Энгель сразу нашли общий язык, и Энгель превратился в активного сторонника его деятельности, помог ему преодолеть некоторые сложности и призывал развивать свои идеи и дальше. Без Энгеля Киллинг мог бы и забросить это дело.

Сначала Киллинг полагал, что знает полный список простых алгебр Ли и что это алгебры so( n) и su( n), соответствующие двум бесконечным семействам [49]групп Ли — специальным ортогональным группам SO( n), состоящим из всех вращений в п-мерном пространстве, и их аналогам SU( n) для комплексных п-мерных пространств, так называемых специальных унитарных групп. Историк Томас Хокинс представлял себе «изумление, с которым Энгель читал письмо Киллинга, содержащее эти смелые предположения. Какой-то малоизвестный профессор из Лицея, посвятившей себя образованию лиц духовного звания в глухом углу Восточной Пруссии, поддерживает общение с авторитетнейшими учеными и высказывает гипотезы о глубоких теоремах из разработанной Ли теории групп преобразований».

Летом 1886 года Киллинг посетил Лейпциг, где работали Ли и Энгель. К сожалению, между Ли и Киллингом возникли трения; Ли никогда не отдавал должного работам Киллинга и старался принизить их значимость.

Киллинг быстро обнаружил, что его исходное предположение о простых алгебрах Ли было неверным, ибо он открыл новую алгебру, которой соответствует группа Ли, известная сейчас как G 2. Ее размерность равнялась 14, и она, в отличие от специальных линейных и ортогональных алгебр Ли, судя по всему, не принадлежала к какому-либо бесконечному семейству. Она представляла собой одинокое исключение.

Если это казалось странным, то еще более странной была окончательная классификация, которую Киллинг получил зимой 1887 года. К двум бесконечным семействам Киллинг добавил третье — алгебры Ли sp(2 n), соответствующие тому, что сейчас известно как симплектические группы Sp(2 n). (В наше время ортогональные группы разбивают на два различных подсемейства в зависимости от того, действует ли группа на пространстве четной или нечетной размерности, что приводит к наличию четырех семейств; на то есть веские причины.) А исключительная группа G 2приобрела пятерых спутников: двух с размерностью 56, а также короткое семейство, быстро подходящее к концу, с размерностями 78, 133 и 248.

Классификация Киллинга была получена с применением длинных алгебраических рассуждений, с помощью которых всю проблему удалось свести к прекраснейшей задаче из геометрии. Из гипотетических простых алгебр Ли он сумел извлечь конфигурацию точек в многомерном пространстве, известную теперь как система корней. Ровно для трех простых алгебр Ли система корней живет в двумерном пространстве. Эти корневые системы показаны на рисунке.

Системы корней в размерности два.

Эти диаграммы обладают высокой степенью симметрии. Они несколько похожи на узоры, которые видны в калейдоскопе, где два зеркала, расположенные под углом друг к другу, создают множественные отражения. Эта схожесть неслучайна, потому что системы корней имеют чудесные, изящные группы симметрии. Известные ныне как группы Вейля (что несправедливо, потому что изобрел их Киллинг), они представляют собой многомерные аналоги узоров, образованных отражаемыми объектами в калейдоскопе.

Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии