Читаем Истина и красота. Всемирная история симметрии полностью

В 1834 году он обратился к инженерному делу, посещая занятия в Школе мостов и дорог. Но вскоре признался своим друзьям, что инженер из него выйдет «не более чем посредственный». Он решил, что на самом деле хочет преподавать математику, и оставил занятия инженерным делом. Такое резкое переключение принесло свои плоды: в 1838 году он начал читать лекции по анализу в Политехнической школе, а к 1841-му стал еще и профессором прикладной механики в своей старой инженерной школе. Сен-Венан говорит нам, что Пьер «обыкновенно работал в течение вечера, не ложась спать до поздней ночи, а затем читал, оставляя себе лишь несколько часов неспокойного сна и при этом злоупотребляя кофе и опиумом, а до своей женитьбы еще и неправильно и нерегулярно питаясь». Женился он на дочери своего бывшего учителя латыни.

Ванцель изучал работы Руффини, Абеля, Галуа и Гаусса, высказывая большой интерес к теории уравнений. В 1837 году его работа «О средствах, позволяющих установить, разрешима ли геометрическая задача с помощью циркуля и линейки» вышла в Лиувиллевском Journal de Mathématiques Pures et Appliquées. Вопрос о возможности построения рассматривался в ней начиная с того места, на котором остановился Гаусс. Ванцель умер в 1848 году в возрасте 33 лет — вероятно, в результате чрезмерной нагрузки из-за избытка преподавания и административных обязанностей.


В вопросах о трисекции угла и удвоении куба данные Ванцелем доказательства невозможности напоминают эпическую работу Гаусса о правильных многоугольниках, только являются намного более простыми. Я начну с задачи об удвоении куба, в которой суть дела очень наглядна. Можно ли циркулем и линейкой построить отрезок длины 3√2?

Выполненный Гауссом анализ правильных многоугольников основан на идее, что любое геометрическое построение сводится к решению ряда квадратных уравнений. По существу, он считает это само собой разумеющимся, поскольку это алгебраически следует из свойств линий и окружностей. Некоторые не слишком сложные алгебраические выкладки позволяют заключить, что для любой допускающей построение величины ее «минимальный многочлен» — простейшее уравнение, которому она удовлетворяет — имеет степень, равную степени двойки[29]. Это уравнение может быть линейным, квадратным, иметь степень 4, 8, 16, 32, 64… — одну из степеней числа 2.

С другой стороны, число 3√2 удовлетворяет кубическому уравнению x3 − 2 = 0, и это[30] и есть его минимальный многочлен. Его степень равна 3, что не есть степень числа 2. Поэтому допущение о возможности удвоения куба с использованием циркуля и линейки в силу безупречной логики ведет к заключению, что 3 есть степень числа 2. Это очевидным образом неверно. Тем самым, методом reductio ad absurdum показано, что интересующего нас построения не существует.

Трисекция угла невозможна по схожим причинам, однако доказательство тут немного сложнее.

Во-первых, некоторые углы можно точно разделить на три части. Хороший пример дается углом 180°, который при делении на три части дает 60° — угол, который можно построить при построении правильного шестиугольника. Таким образом, доказательство невозможности следует начать с выбора некоторого другого угла и с доказательства, что этот угол нельзя разбить на три равные части. Проще всего взять уже появлявшийся у нас угол 60°. Одна треть от него составляет 20°, и мы покажем, что угол 20° построить циркулем и линейкой нельзя.

Вот отрезвляющие соображения. Возьмем транспортир — инструмент для измерения углов. На нем четко нанесены углы 10°, 20° и так далее. Но эти углы не вполне точные — хотя бы из-за того, что линии, которыми они обозначены, имеют некоторую толщину. Можно отмерить угол в 20° с достаточной точностью для архитектурных или инженерных чертежей. Но, используя эвклидовы методы, нельзя построить угол, в точности равный 20°; сейчас мы это покажем.

Ключевую роль здесь играет тригонометрия — наука о количественных мерах углов. Предположим, что мы начинаем с шестиугольника, вписанного в окружность радиуса 1. Там имеются углы 60°, и если мы сможем разбить один из них на три равные части, мы сможем, тем самым построить отрезок, выделенный жирным на рисунке.

Трисекция угла 60° эквивалентна построению отрезка, длина которого обозначена буквой x.

Пусть его длина равна x. Тригонометрия говорит нам, что x удовлетворяет уравнению 8x3 − 6x − 1 = 0. Как и в задаче об удвоении куба, это кубическое уравнение, и оно также представляет собой минимальный многочлен, которому удовлетворяет x. Но если бы отрезок длины x можно было построить, то степень его минимального многочлена была бы степенью числа 2. Мы пришли к тому же противоречию и к тому же выводу: данное построение невозможно.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература
Нет соединения с сервером, попробуйте зайти чуть позже