Читаем Истина и красота. Всемирная история симметрии полностью

Число π вполне заслуженно знаменито из-за своей связи с окружностями и сферами. Кроме него математика содержит и другие замечательные числа, наиболее важное из которых — вероятно, даже более важное, чем π — известно как e. Его численное значение приближенно равняется 2,71828, и, как и π, оно иррационально. Это число появилось в 1618 году, на заре истории логарифмов; оно правильно определяет банковский процент, если вычислять сложные проценты по все более и более коротким отрезкам времени. В письме Лейбница к Гюйгенсу от 1690 года оно было обозначено буквой b. Обозначение e было введено Эйлером в 1727 году и впервые появилось в печати в «Механике» в 1736-м.

Используя комплексные числа, Эйлер открыл замечательное соотношение между e и π, которое часто называют самой прекрасной формулой во всей математике. Эйлер доказал, что e = −1. (Эта формула допускает интуитивное объяснение, но там используются дифференциальные уравнения.) После сделанного Лиувиллем открытия следующий шаг к доказательству трансцендентности π занял еще 29 лет, и доказательство относилось к числу e. В 1873 году французский математик Шарль Эрмит доказал, что e трансцендентно. Жизненный путь Эрмита удивительно похож на жизненный путь Галуа — он поступил в Коллеж Людовика Великого, его учил Ришар, он пытался доказать неразрешимость уравнения пятой степени и хотел учиться в Политехнической школе. Но в отличие от Галуа, буквально цепляясь зубами, он туда все же попал.

Один из учеников Эрмита, знаменитый математик Анри Пуанкаре, заметил, что мозг Эрмита работал необычным образом: «Назвать Эрмита логиком! Ничто, на мой взгляд, не лежит дальше от истины. Создавалось впечатление, что методы возникают у него в голове каким-то непостижимым образом». При доказательстве трансцендентности числа e это сослужило Эрмиту добрую службу. Доказательство представляло собой развитое обобщение данного Ламбертом доказательства иррациональности числа π. В нем также использовался анализ; предлагалось вычислить некий интеграл двумя способами; и если бы e было алгебраическим, то два полученных ответа не совпадали бы: один равнялся бы нулю, а другой нет. Трудный шаг состоял в том, чтобы найти, какой именно интеграл надо вычислить.

Доказательство как таковое занимает около двух печатных страниц. Но что это за чудесные страницы! Можно было бы искать всю жизнь и не найти правильный интеграл.

Число e, по крайней мере, представляет собой «естественный» объект в математических исследованиях. Оно присутствует в математике повсеместно, и оно жизненно важно, в особенности в комплексном анализе и в теории дифференциальных уравнений. Хотя Эрмит и не продавил задачу о числе π, он по крайней мере продвинулся вперед по сравнению с достаточно искусственным примером Лиувилля. Теперь математики знали, что вполне обыденные математические операции естественным образом приводят к числам, которые оказываются трансцендентными. Один из последователей Эрмита вскоре использовал его идеи, чтобы доказать, что среди этих чисел есть и число π.


Карл Луис Фердинанд фон Линдеманн родился в 1852 году в семье филолога Фердинанда Линдеманна и дочери директора школы Эмили Крузиус. Фердинанд переходил с одного места работы на другое и, в частности, побывал директором газового завода.

Как и многие студенты в Германии в конце девятнадцатого столетия, Линдеманн-младший переезжал из одного университета в другой — из Геттингена в Эрланген, оттуда в Мюнхен. В Эрлангене он защитил диссертацию по неэвклидовой геометрии под руководством Феликса Клейна. Он путешествовал за границу, в Оксфорд и Кембридж, а затем в Париж, где познакомился с Эрмитом. В 1879 году, защитив диссертацию, дающую право преподавать в высшем учебном заведении, он стал профессором в университете Фрайбурга. Четыре года спустя он перебрался в Кенигсбергский университет, где встретил свою будущую жену Элизабет Кюсснер — дочь преподавателя, игравшую в театре. Десять лет спустя он стал полным профессором в Мюнхенском университете[33].

В 1882 году, на полпути между поездкой в Париж и своим назначением в Кенигсберг, Линдеманн понял, как распространить метод Эрмита на доказательство трансцендентности числа π. Именно это и принесло ему славу. Некоторые историки полагают, что Линдеманну просто повезло — что он просто случайно наткнулся на правильное обобщение блестящей идеи Эрмита. Но, как однажды заметил гольфист Гари Плеер, «чем лучше я играю, тем больше мне везет». Так же, по-видимому, обстояло дело и с Линдеманном. Если могло повезти кому-то, то почему не повезло Эрмиту? Позднее Линдеманн обратился к математической физике, занявшись исследованиями электрона. Наиболее известным из его учеников был Давид Гильберт.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература
Нет соединения с сервером, попробуйте зайти чуть позже