Ход развития физиологии, таким образом, приводит к тому, что, соответственно трем основным проявлениям физиологических функций об мену веществ, обмену энергии и обмену информации, — она превращается в комплексную область знания. Физиология призвана синтезировать и обобщить данные трех отпочковавшихся от нее специальных наук — биохимии, биофизики и физиологической кибернетики. Таким рисуется будущее физиологии.
Глава 12
Биофизика[94]
Биофизика — одна из наиболее молодых биологических дисциплин. Еще задолго до ее формирования физические методы широко использовались при изучении различных биологических явлений. Микроскоп раздвинул горизонты биологического исследования и стал основным прибором биолога, благодаря которому только и могли возникнуть и развиваться такие дисциплины, как гистология и цитология. Физические методы измерения потенциалов создали электрофизиологию. Но это еще нельзя назвать биофизикой. Здесь еще нет применения физических методов для дознания физико-химических явлений, протекающих в живых системах. Физические приборы просто помогли лучше изучить морфологическое строение организмов и более четко фиксировать протекание биологических и физиологических процессов. При этом ни обычные подходы, ни научное мышление исследователя не претерпели сколько-нибудь существенного изменения.
В современном понимании биофизика начала складываться на грани XIX–XX вв. Гораздо раньше, однако, в недрах других дисциплин возникали направления и отдельные эпизодические исследования, которые так или иначе были связаны с попытками найти физические подходы к пониманию интимных механизмов, лежащих в основе биологических явлений, и получать прямую информацию о физико-химических реакциях, протекающих в биологических системах. Одним из первых шагов в этом направлении были работы А.Л. Лавуазье по применению первого закона термодинамики к энергетике живых организмов, относящиеся к концу XVIII в.
В формировании биофизики можно ясно обнаружить два истока. По мере развития физики в XX столетии и роста интереса к познанию сущности жизни усиливалась тенденция объяснять жизненные явления языком физических законов. Уже в первой половине XVIII в. предпринимались попытки использовать гидродинамические законы течения жидкостей по трубам для объяснения закономерности движения крови по сосудам кровеносной системы (Л. Эйлер). Открытие кристаллического состояния и некоторых аналогий в явлениях роста и размножения кристаллов и живых организмов послужило толчком к построению теорий кристаллического состояния живого вещества. Это направление стало развиваться особенно сильно после того, как было открыто наличие молекулярной упорядоченности в жидких системах, и возникла пользовавшаяся большим успехом идея, что живое вещество является жидким кристаллом. Открытие пьезоэлектрического эффекта — способности кристаллов изменять свой объем при наложении электрического потенциала — привело к попыткам объяснения через это явление сокращения поперечнополосатых мышц (В.К. Рентген). Была даже создана физическая модель мышцы.
Большое значение для развития биофизики сыграли исследования немецкого физика и физиолога Г. Гельмгольца. Он выяснил механизм работы глаза как оптической системы и впервые с математической точностью определил скорость распространения возбуждения по нерву. К середине XIX в. относятся также попытки анализировать некоторые патологические биологические явления — при помощи математических методов (Д. Бернулли, Л. Максвелл).
Вторым истоком биофизики оказалась физиология, в которой наряду с изучением физиологических процессов росло стремление раскрыть внутренние механизмы, лежащие в основе элементарных физиологических функций, опираясь на принципы физики и химии. Это стремление ярко проявлялось на протяжении всей истории физиологии.