Итальянец Л. Гальвани, опубликовавший в 1791 г. «Трактат о силах электричества при мышечном движении», пытался объяснить сокращение мышцы тем, что ее наружная поверхность заряжена отрицательным, а внутренняя положительным электричеством, т. е., иными словами, мышца является лейденской банкой, а нерв — проводником, через который проходит электрический разряд. Его оппонент, физик А. Вольта, отрицавший вначале наличие животного электричества, впоследствии доказывал, что биоэлектрические потенциалы обусловлены наличием в тканях гальванических элементов. Существованием батареи таких элементов он объяснял мощные электрические разряды у скатов. Это представление получило всеобщее признание. Тем самым была поставлена проблема — как устроены эти химические элементы, и в какой части тела они помещаются у организмов.
Основатель электрофизиологии Э. Дю-Буа-Реймон еще в 40-х годах XIX в. выдвинул гипотезу о строении этого биогальванического элемента, согласно которой в мышцах должны быть заключены особые «периполярные молекулы», состоящие из двух диполярных молекул, обращенных друг к другу положительными, а наружу отрицательными полюсами, которые при повреждении распадаются. Показательно, что даже такие физиологи, как Клод Бернар, считавшие, что понимание «гармонии всего организма» не может быть достигнуто на основании физики и химии, все же признавали, что объяснение отдельных элементарных жизненных явлений на физико-химической основе является основной задачей физиологии.
Некоторые физиологи успешно вели исследование интимных механизмов физиологических функций, применяя физико-химические подходы. Так, И.М. Сеченов, изучая процесс дыхания у высших животных и пытаясь выявить количественную сторону этого процесса, был поставлен перед необходимостью оценить растворимость кислорода и углекислоты в плазме крови. Исследуя растворимость этих газов в водных растворах солей, он вывел закон растворимости газов в зависимости от их концентрации, известный под названием правила Сеченова. Этот закон позволил ему количественно описать дыхательный процесс в легких животных.
В середине XIX в. в физиологии растений также ставились вопросы, которые позже стали проблемами биофизики. В 1845 г. Р. Майер обнаружил, что функцией зеленых растений является превращение физической энергии света в энергию химическую, являющуюся основой биоэнергетики. Тем самым была поставлена одна из основных проблем биофизики — выяснение механизма перехода физической энергии в химическую.
В 60-х годах XIX в. в связи с необходимостью объяснения клеточного тургора внимание физиологов растений было привлечено к явлению осмоса. В 1870 г. для определения осмотического давления в живых клетках растений Г. де Фриз разработал широко известный осмометрический метод. Стали формироваться представления о роли оболочки клетки как осмотической мембраны в регуляции водного баланса клеток. Вырисовывалась широкая проблема выявления механизмов проницаемости клеточных оболочек для различных веществ. Биофизический характер носили классические исследования К.А. Тимирязева, в которых была установлена связь между поглощением света в различных участках спектра и интенсивностью фотосинтеза.
Все подобные работы, относившиеся к компетенции физики и физиологии, сыграли большую роль в формировании на грани XIX и XX вв. уже двух чисто биофизических направлений — в рамках физико-математических и биологических наук. Оба они развивались в дальнейшем своими, специфическими путями.