В дальнейшем исследования в области коллоидной химии протоплазмы выявили ряд особенностей, характерных для живых клеток, прежде всего, вязкость протоплазмы. Для измерения этого важнейшего показателя коллоидного состояния были разработаны специальные биофизические методы, которые позволили производить эти измерения в пределах одной клетки с большой точностью (наблюдение за оседанием тяжелых частиц и кинорегистрация броуновского движения частиц).
Большой вклад в изучение вязкости протоплазмы внесла школа Л. Гейльбруна. Исследователями этой школы было установлено, что изменения вязкости связаны с физиологическим состоянием клетки. Так, при всяком переходе из состояния покоя к работе, например при проведении возбуждения, происходит повышение вязкости протоплазмы вплоть до ее превращения в гель. Гейльбрун (1928) доказывал, что увеличение вязкости связано с тем, что возникающая при возбуждении реакция приводит к высвобождению связанного кальция, который вызывает обратимую коагуляцию белков. В дальнейшем в опытах на крупных растительных клетках было установлено, что при распределении возбуждения «застудневание» наблюдается там, где возникает электрическая активность, и именно в зоне такого «застудневания» происходят активные химические процессы. Ионно-коллоидное направление особенно интенсивно развивалось в Германии, где ведущую роль играла школа профессора Р. Гебера в Киле (10-20-е годы), известного своими исследованиями по влиянию кислотности на взаимодействие ионов солей с биоколлоидами. Он же впервые установил высокую электропроводность живых клеток для токов высокой частоты, показав, что она соответствует количеству находящихся в клетках свободных ионов солей. Эта электропроводность получила название внутренней электропроводности. Фундаментальная монография «Физическая химия клетки и ткани» (1926) Гебера долгое время служила для биофизиков настольной книгой.
Еще в конце XIX в. в физической химии возникло учение о скоростях развития химических реакций (химическая кинетика). Работы Я. Вант-Гоффа (Нобелевская премия, 1901), установившего зависимость между скоростью химических реакций и температурой, служили основой, на которой аналогичное направление развивалось и в биофизике. Изучение температурных коэффициентов физиологических реакций сразу же обнаружило, что скорость протекания этих реакций увеличивается с повышением температуры. Аррениус углубил кинетические представления и ввел понятие энергии активации как характерного показателя реакционной активности. Его известное уравнение открыло возможность определять энергию активации на Живых неповрежденных клетках и тем самым описывать особенности реакций, протекающих в организмах. Совместно с микробиологами Аррениус пытался определять кинетические параметры иммунологических реакций у бактерий. Его книга «Количественные законы биологической химии» (1926) послужила введением в биологическую кинетику. Впоследствии появилось много исследований по определению физико-химических параметров реакций, протекающих при различных биологических процессах (сокращение сердца, клеточное деление, поражение повреждающими агентами и т. д.).
Температурные характеристики Аррениуса стали использовать для вскрытия механизмов и объективной оценки биологической активности химических соединений, например дезинфицирующего эффекта на бактериях (К. Бирштейн).
Существенный вклад в теоретические представления о физических особенностях протоплазмы внес американский исследователь В. Крозье в 20-х годах XX в. Чтобы объяснить парадоксальный факт, что сложные биологические системы дают простые кинетические кривые, он разработал теорию «узкого места», согласно которой при снятии температурных характеристик со сложной системы последовательных реакций общий ответ соответствует только одной, наиболее медленной из протекающих реакций. Эта закономерность была в дальнейшем подтверждена большим количеством экспериментальных исследований.