Включение катализаторов приводило к неравенству концентрации веществ в капле и в среде и автоматически превращало капли в открытые микросистемы, характеризующиеся постоянным обменом веществ со средой. Это и явилось, вероятно, предпосылкой для возникновения «естественного отбора» таких систем, который способствовал сохранению наиболее устойчивых. Назвав условно такие системы «пробионтами», Опарин указывает, что в первую очередь должен был совершенствоваться их каталитический аппарат как главный фактор организации обмена веществ. Каталитическая активность простейших катализаторов была очень невелика, однако в ходе естественного отбора пробионтов создавались каталитические комплексы — коферменты, обладавшие повышенной активностью. Повсеместное распространение в живых организмах коферментов указывает на их очень древнее происхождение. При дальнейшем усложнении обмена коферменты перестали удовлетворять потребностям живых систем: прогрессивная эволюция пошла по пути образования множества новых, гораздо более мощных катализаторов — ферментов. Таким образом, согласно Опарину, происходило совершенствование как всей системы в целом, так и отдельных ее механизмов.
Многочисленные геологические исследования показали невозможность установления на земной поверхности термодинамического равновесия с неизбежным для него полным распадом абиогенно возникших органических веществ. Вместе с тем наряду с синтезом все более сложных органических веществ на одних и тех же территориях и акваториях мог иметь место и их распад, сопровождавшийся затем новым синтезом. Чередование таких процессов могло приводить к многократному возникновению пробионтов.
А.Г. Пасынский (1959) показал, что в открытых химических системах ферментативные реакции проявляют некоторые особенности, отсутствующие в замкнутых системах. По его мнению, наиболее существенное эволюционное значение должны были иметь открытые системы, устойчивость которых динамически поддерживалась происходившими в системе химическими реакциями. Другой важной особенностью открытых систем является то, что в условиях сложного комплекса сопряженных реакций основное значение приобретает направление, по которому реакция может протекать с наибольшей скоростью. По мнению Пасынского, на добиологической стадии развития принцип максимальной скорости реакции мог обеспечивать преимущество одних открытых систем перед другими и лежать в основе естественного отбора. По-видимому, наиболее примитивные формы живых существ могли образоваться на основе открытых химических систем еще до того, как возникли формы передачи информации, связанные с молекулами нуклеиновых кислот.
Общей чертой любой многомолекулярной системы, выделившейся иэ «первичного бульона», должно было быть наличие определенной поверхности, отделявшей эту систему от окружающего раствора. Такие поверхности возникают спонтанно в результате физико-химических закономерностей, заложенных в особенностях химического состава и структуры сложных органических и полимерных веществ. По мнению Г.А. Деборина (1967), появление фазовой границы с измененными структурно-механическими свойствами должно было неизбежно привести к локализации в ней ряда физических и химических процессов, связанных с переносом веществ из одной фазы в другую, а затем, в ходе дальнейшей эволюции, и некоторых биохимических процессов, сопутствующих как явлениям переноса, так и пространственного монтажа ферментных систем. Таким образом, можно полагать, что важнейшим структурным элементом первичных многомолекулярных систем явилась самоформирующаяся поверхностная пленка, которая в процессе дальнейшей химической эволюции могла подвергаться под действием отбора усложнению в составе и тонком строении. Было показано, что одновременно с общим процессом эволюции предбиологических систем путем естественного отбора происходило постепенное приспособление молекулярной поверхности раздела к выполнению определенных функций, их превращение в более упорядоченные, многомолекулярные структуры, специализированные на переносе веществ и энергии, необходимых для жизнедеятельности и размножения клетки. Эта эволюция достигла наибольшего совершенства в клеточных органеллах, например, в мембранах митохондрий, где сосредоточены ферментативные механизмы дыхания и окислительного фосфорилирования.
В качестве одного из возможных предшественников клетки большой интерес представляют микросферы, впервые полученные С. Фоксом и сотрудниками (1955). Фокс считает, что белок мог впервые образоваться на поверхности Земли близ областей с повышенной температурой, где смесь накопившихся аминокислот нагревалась, полимеризовалась, а затем вымывалась в океан. Р. Янгу (1964, 1970) удалось показать, что в процессе синтеза протеиноидов из аминокислот образуются гуанин, а также жирные кислоты. Это делает микросферы интересным объектом для изучения одного из возможных путей первичного образования клеток.