Справедливости ради следует заметить, что явление бактериальной трансформации было обнаружено значительно ранее открытия Эвери, Мак-Леода и Мак-Карти. В 1928 г. Ф. Гриффит опубликовал статью, в которой сообщил, что после добавления к новирулентным (некапсулированным) пневмококкам убитых клеток капсулированного вирулентного штамма получаемая смесь клеток становится губительной для мышей. Более того, выделяемые из зараженных этой смесью животных живые клетки пневмококков были уже вирулентными и обладали полисахаридной капсулой. Тем самым в этом опыте было показано, что под воздействием каких-то компонентов убитых клеток пневмококков некалсулированная форма бактерий превращается в капсулообразующую вирулентную форму. 16 лет спустя Эвери, Мак-Леод и Мак-Карти заменили в этом опыте убитые целые клетки пневмококков их дезоксирибонуклеиновой кислотой и показали, что именно ДНК обладает трансформирующей активностью (см. также главы 7 и 25). Значение этого открытия трудно переоценить. Оно стимулировало изучение нуклеиновых кислот во многих лабораториях мира и заставило сконцентрировать внимание ученых именно на ДНК.
Наряду с открытием Эвери, Мак-Леода и Мак-Карти к началу 50-х годов уже накопилось довольно большое количество прямых и косвенных данных о том, что нуклеиновые кислоты играют исключительную роль в жизнедеятельности и несут генетическую функцию. На это, в частности, указывал и характер локализации ДНК в клетке и данные Р. Вендрели (1948) о том, что содержание ДНК на клетку строго постоянно и коррелирует со степенью плоидности: в гаплоидных половых клетках ДНК вдвое меньше, чем в диплоидных соматических. В пользу генетической роли ДНК свидетельствовала также ее выраженная метаболическая стабильность. К началу 50-х годов накопилось много разнообразных фактов, свидетельствовавших о том, что большинство известных мутагенных факторов действуют преимущественно на нуклеиновые кислоты и, в особенности, на ДНК (Р. Хочкисс, 1949; Г. Эфрусси-Тейлор, 1951; Э. Фриз. 1957 и др.).
Особое значение в установлении генетической роли нуклеиновых кислот имело изучение различных фагов и вирусов. В 1933 г. Д. Шлезингер нашел ДНК в бактериофаге кишечной палочки. С момента выделения У. Стенли (1935, Нобелевская премия, 1946) вируса табачной мозаики (ВТМ) в кристаллическом состоянии начался новый этап в изучении растительных вирусов. В 1937–1938 гг. сотрудники Ротамстедской сельскохозяйственной станции (Англия) Ф. Боуден и Н. Пири показали, что многие выделенные ими растительные вирусы являются не глобулинами, а представляют собой рибонуклеопротеиды и содержат в качестве обязательного компонента нуклеиновую кислоту. В самом начале 40-х годов были опубликованы работы Г. Шрамма (1940), П.А. Агатова (1941), Г. Миллера и У. Стенли (1941), свидетельствовавшие о том, что заметная химическая модификация белкового компонента не приводит к утрате инфекционности ВТМ. Это указывало на то, что белковый компонент не может быть носителем наследственных свойств вируса, как продолжали считать многие микробиологи. Убедительные доказательства в пользу генетической роли нуклеиновой кислоты (РНК) у растительных вирусов были получены в 1956 г. Г. Шраммом в Тюбингене (ФРГ) и X. Френкель-Конратом в Калифорнии (США). Эти исследователи практически одновременно и независимо друг от друга выделили из ВТМ РНК и показали, что именно она, а не белок, обладает инфекционностью: в результате заражения растений табака этой РНК в них происходило формирование и размножение нормальных вирусных частиц. Это означало, что РНК содержит информацию для синтеза и сборки всех вирусных компонентов, в том числе и вирусного белка. В 1968 г. И.Г. Атабеков установил, что белок играет существенную роль при самом заражении растений — природой белка определяется спектр растений-хозяев.