Особенно необходимо выделить Институт магнитогидродинамики Сибирского отделения АН СССР, где под руководством М.Ф. Жукова была создана научная школа по изучению и применению плазмы (М.С. Даутов, А.С. Аньшаков и др.); разрабатывалась теория и проводились экспериментальные исследования плазмотронов; были разработаны различные конструкции плазмотронов: с осевой стабилизацией дуги, двусторонним истечением плазмы, с вращением дуги в магнитном поле и т.д.
В 60-х годах фирма «Линде» (США) разработала конструкцию плазменно-дуговой сталеплавильной печи с керамическим тиглем и тремя плазмотронами. Подобные установки разрабатывали также фирмы Англии, Японии и ГДР.
В СССР разработки плавильных плазменных печей вел ВНИИЭТО: 1977–1979 гг. в ГДР была введена в эксплуатацию крупнейшая в мире печь емкостью 30–45 т и мощностью 20 МВт с четырьмя плазмотронами постоянного тока для плавки сталей и сплавов (изготовлена на Новосибирском ЗЭТО); 1979 г. — пуск печи емкостью 12 т на Челябинском металлургическом заводе.
Фирма «Дайдо Стил» (Япония, 1969 г.) ввела в эксплуатацию индукционно-плазменную печь емкостью 500 кг, общей мощностью около 400 кВт, из которых 200 кВт за счет индуктора и 200 кВт — плазмотрона постоянного тока с использованием аргона. В нашей стране индукционно-плазменные печи разрабатывал ВНИИЭТО. Основная энергия в металл передается индукционным методом. Плазмотрон позволяет интенсифицировать процесс расплавления шихты, а при рафинировании расплавленного металла подогревать шлак.
В начале 70-х годов в разных странах (Япония, СССР и др.) стали разрабатываться плазмотроны с полым катодом, работающие при давлениях 1–100 Па. По сравнению с электронно-лучевыми установками в них снижается испарение металла и легирующих добавок. Фирма «Ульвак» (Япония) создала плазменную вакуумную установку мощностью 2400 кВт для переплава титановой губки и титановых отходов. Установки такого типа разрабатывались также у нас во ВНИИЭТО и МЭИ.
В начале 70-х годов работали промышленные установки для крекинга метана мощностью 6–8 МВт (фирма «Хюльс», ФРГ) и 25 МВт («Вестингауз», США).
Шведская фирма «СКФ стил дивизион» в конце 70-х годов разработала новые плазменные процессы прямого восстановления железа, получения чугуна при усовершенствованной доменной плавке и извлечения металлов из улавливаемой пыли прокатного производства.
После открытия электрона и измерения отношения его заряда к массе началось широкое изучение свойств электронных потоков, их получения и взаимодействия с электрическими и магнитными полями. Электронный микроскоп был создан трудами ряда ученых, в том числе Н. Руска, М. фон Арденна (Германия), В.К. Зворыкина (США) в 20–30-х годах. В нем применялись электронные пушки небольшой мощности с малыми токами и большими разгоняющими напряжениями. Тогда же были разработаны электростатические и магнитные системы управления электронным лучом.
Идея создания установки электронно-лучевого нагрева появилась еще в начале XX в., и в 1905 г. М. фон Пирани получил патент Германии на использование электронного луча как источника нагрева. Однако для технологического использования требовались более мощные электронные пушки, создание которых связано с различными конструктивными трудностями, а также были необходимы исследования взаимодействия электронного луча и материала обрабатываемого изделия.
Первые электронно-лучевые установки (ЭЛУ) для плавки ниобия и тантала были созданы в 50-х годах. С 1960 г. ЭЛУ стали использоваться для нанесения покрытий, а затем и для обработки поверхности и размерной обработки, с 1970 г. — для нетермической микрообработки и химической обработки полимеров.