Читаем История естествознания в эпоху эллинизма и Римской империи полностью

Седьмая, восьмая и девятая книги посвящены арифметике, т. е. теории целых и рациональных чисел, разработанной, как указывалось выше, пифагорейцами не позднее V в. до н. э. Помимо теорем, относящихся к сложению и умножению целых чисел и умножению их отношений, здесь рассматриваются вопросы теории чисел: Вводится «алгоритм Эвклида», излагаются основы теории делимости целых чисел, доказывается теорема о том, что существует бесконечное множество простых чисел. Эти три книги написаны, по-видимому, на основе не дошедших до нас сочинений Архита.

Десятая книга, содержащая изложение результатов, полученных Теэтетом, посвящена квадратичным иррационaльностям. Дается их классификация (биномиали, апотомы, медиали и т. д.).

В одиннадцатой книге рассматриваются основы стереометрии; здесь содержатся теоремы о прямых и плоскостях в пространстве, трехмерные задачи на построение и т. д.

В двенадцатой книге излагается метод исчерпывания Эвдокса, с помощью которого доказываются теоремы, относящиеся к площади круга и к объему шара, а также выводятся соотношения объемов пирамид и конусов с объемами соответствующих призм и цилиндров.

Основные результаты тринадцатой книги, посвященной пяти правильным многогранникам, принадлежат Теэтету.

Позднее к «Элементам» были присоединены четырнадцатая и пятнадцатая книги, не принадлежавшие Эвклиду, а написанные позднее — одна во II в. до н. э., а другая в VI в. н. э. Об их содержании будет сказано ниже.

При всем богатстве материала, включенного в «Элементы» Эвклида, это сочинение отнюдь не было всеохватывающей энциклопедией античной математики. Так, в него не вошли теоремы о «луночках» Гиппократа Хиосского, а также три знаменитые задачи древности — об удвоении куба, трисекции угла и квадратуре круга. Мы не находим в нем также ни единого упоминания конических сечений, теория которых в это время уже начала разрабатываться (в том числе и самим Эвклидом). Кроме «Элементов», Эвклид написал еще несколько сочинений, относящихся к различным разделам математики. Лишь немногие из них сохранились — либо в оригинале, либо в арабских переводах. Перечислять их и останавливаться на их содержании мы не будем, поскольку математика не является сюжетом данной книги (соответствующие сведения можно найти в любом курсе по истории древней математики[96]). Однако стоит отметить, что, помимо чисто математических сочинений, у Эвклида были работы, которые, согласно нынешней терминологии, относятся к различным разделам математической физики. Это «Явления» (Φαινόμενα), посвященные) элементарной сферической астрономии, далее — «Оптика» и «Катоптрика» и, наконец, небольшой трактат «Сечения канона» (Κατατομή κανόνος), содержавший десять предложений о музыкальных интервалах. Изложение во всех этих сочинениях, как и в «Элементах», имело строго дедуктивный характер, причем теоремы в них выводились из точно сформулированных физических гипотез и математических постулатов. Таким образом, и в работах по математической физике Эвклид следовал традициям Академии: никаких ссылок на опыты и на экспериментальные устройства мы в них не находим.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже