Читаем История естествознания в эпоху эллинизма и Римской империи полностью

В целом же изучение трудов Аполлония Пергского оставляет двойственное впечатление. С одной стороны, мы не можем не восхищаться остроумием и глубиной его геометрического мышления и полнотой полученных им результатов, составивших одну из самых блестящих страниц в истории математических наук. С другой же стороны, мы все время ощущаем границы, которые ставила геометрическая алгебра дальнейшему развитию математики. Геометрические методы александрийской школы были подобны панцирю, облекавшему живое тело греческой математики и стеснявшему ее дальнейший свободный рост.

Еще один аспект достижений Аполлония не может не привлечь внимания историка пауки. Теория конических сечений, разработанная великим математиком из Перги, осталась абстрактной математической теорией, по получившей никакого применения ни в математическом естествознании, ни в технике того времени (если не считать законов отражения света от параболических зеркал, сформулированных византийским математиком VI в. н. э. Анфемием, прославившимся главным образом в качестве строителя собора св. Софии в Константинополе). Так, например, несмотря на все успехи технической баллистики в эпоху эллинизма, осталось незамеченным то кардинальное обстоятельство, что тело, брошенное под углом к горизонту, летит по кривой, близкой к параболе. Своевременное уяснение этого факта (который был осознан лишь почти две тысячи лет спустя) могло бы послужить мощным импульсом к развитию динамики движущихся тел.

Другой капитальный просчет греческой науки состоял в неуклонной приверженности к догме круговых движений небесных тел. Движутся ли планеты, согласно геоцентрической модели мира, вокруг Земли, или же Земля вместе с другими небесными телами совершает свои обороты вокруг Солнца, как с необычайной для своего времени смелостью предположил Аристарх Самосский, и в том и в другом случае движение считалось происходящим по круговым орбитам. В пятой главе, посвященной эллинистической астрономии, будет рассказано, каким образом объяснялись видимые нерегулярности в движении небесных тел: для этого была придумана гипотеза эпициклов и введено понятие эксцентрических орбит; при всем этом, однако, в основе небесных орбит лежали комбинации круговых движений. Заметим, кстати, что первым ученым, который ввел в науку гипотезу эпициклов, был все тот же Аполлоний из Перги. Уж кто-кто, но он, во всяком случае, мог заметить, что при определенных соотношениях круговых скоростей движения планеты по эпициклу и движения центра эпицикла по деференту (см. пятую главу) обе круговые орбиты сливаются, превращаясь в эллипс. Таким образом, теоретическая возможность заменить круговые орбиты эллиптическими у греков имелась. Реализация этой возможности в сочетаний с гелиоцентрической системой Аристарха означала бы колоссальный скачок в развитии астрономии. Но для того, чтобы совершить этот скачок, грекам надо было преодолеть психологический барьер, отделявший античное мышление от мышления нового времени. Сделать это им было не дано (заметим, что еще Коперник находился в плену у догмы круговых движений).

Таким образом, теория конических сечений Аполлония была чисто математической теорией, созданной задолго до того, как представилась реальная возможность ее использования в каких-либо естественнонаучных дисциплинах. В истории науки можно указать и другие примеры подобного опережения математического мышления по сравнению с мышлением естественнонаучным — упомянем хотя бы теорию групп или неевклидову геометрию. Но теория конических сечений является в этом отношении особенно показательной.

Поскольку данная книга не ставит перед собой задачи систематического изложения истории греческой математики, мы не будем останавливаться на других, не дошедших до пас работах Аполлония. От некоторых из них сохранились только заглавия, о содержании других можно составить представление на основе позднейших компиляций — таких, как «Математический сборник» Паппа. Во всяком случае, по своему значению эти работы не могут идти ни в какое сравнение с «Коническими сечениями».

После Аполлония в александрийской математике обнаруживается резкий спад. Правда, до нас дошли сведения о работах нескольких александрийских математиков меньшего калибра — Диокла, Зенодора, Гипсикла, живших в конце III — начале II в. В истории математики эти ученые получили наименование «эпигонов». Они действительно были эпигонами в том смысле, что к основному богатству античной математики, накопленному гениями IV–III вв., добавили лишь некоторые мелочи, не выходившие за рамки уже существовавших идей и теорий. А затем наступает провал, длившийся более двух столетий.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже