2. Пространство беспредельно. От утверждения бесконечности пространства должно быть отличаемо утверждение его беспредельности. Под беспредельностью разумеется свойство пространства никогда не задерживать поступательного движения по прямой, и притом — произвольно взятой прямой, так что со стороны пространства предела движению, в смысле необходимости остановки, оказано никогда не может быть. Поступательное движение, если оно вынуждено прекратиться, терпит это от действия сил или от материальных препятствий, но никак не от пространства. Ясное дело, беспредельность пространства не предполагает непременно бесконечности его, как и, наоборот, бесконечность не включает в себя непременно беспредельности. Всякое смыкание в себя геометрических образов, если они принимаются за основные, устанавливает и возможность беспредельного движения по ним, хотя образы эти конечны. И наоборот, из возможности брать в пространстве величины, превосходящие всякую данную того же рода, вовсе не следует, что никакое движение не может быть остановлено в силу строения самого пространства. Живя на геоиде и принимая за кратчайшие, т. е. за прямые, или скорее прямейшие, линии его геодезические, мы встречаем в своем движении по геодезическим линиям лишь материальные препятствия, и со стороны чисто геометрической геоид должен считаться двухмерным пространством беспредельным; однако это не мешает быть ему конечным.
3. Пространство однородно. Где бы мы ни вырезали мысленно кусок пространства, все геометрические свойства его будут совершенно тождественными со свойствами куска из другого места. Это можно выразить еще, сказав, что место в отношении свойств и характеристик геометрических образов не имеет никакого значения. Любое геометрическое построение, сколь угодно большое и сколь угодно малое, может быть перемещено в пространстве куда угодно, и никаких последствий этого перемещения внутри самого образа наблюдено не будет. Противоположною этой однородности была бы неоднородность пространства, которую можно мыслить двояко:
либо как постепенное изменение свойств пространства, а следовательно, и образов, в нем содержащихся, в зависимости от места, наподобие воздуха все менее плотного по мере удаления от земли,
либо как зернистость пространства[183]
, в силу которой свойства больших образов могут быть всюду одинаковыми, но свойства достаточно малых различны в зависимости от зерна или области той или другой природы, в которую данный образ попадет,либо, наконец, как сочетание того и другого. В первом случае, небольшие сдвиги не изменяли бы существенно пространственных характеристик образов, но большие — вели бы к этому. Во втором случае, и большие, и малые смещения больших образов были бы безразличны, но достаточно малые образы прерывно меняли бы свои характеристики и, при малых сдвигах, внезапно попадали в новые пространственные области. Наконец, третий случай давал бы изменения двоякие. Утверждением однородности пространства исключаются все три случая.