Читаем История новоевропейской философии в её связи с наукой полностью

Однако это суждение Спиноза или Гоббс признали бы истинным лишь по отношению к такой науке, как геометрия, но не по отношению к физике. Так, Гоббс проводит решительное различие между математикой как наукой априорной (а потому и полностью доказательной) и физикой как наукой апостериорной, которая не в состоянии все свои выводы сделать столь же необходимыми, как математические. И аргументация Гоббса очень характерна: геометрические фигуры творим мы сами, а природный мир сотворен Богом, и потому мы не в состоянии непосредственно познать сущность явлений из их причин. "То, что геометрия... является строго доказательной, обусловлено тем... что мы сами рисуем фигуры. Предметы же и явления природы, напротив, мы не в состоянии производить по нашему усмотрению. Эти предметы и явления созданы по воле Бога, и, сверх того, большая часть их, например эфир, недоступна нашим взорам. Поэтому мы и не можем выводить их свойства из причин, которых не видим". В результате науки о природе Гоббс не относит к чистым наукам, какими являются математические (арифметика и геометрия), а в соответствии с давней, еще средневековой традицией относит их к наукам прикладным, хотя и математическим. Сюда Гоббс относит, кроме физики, астрономию и музыку. Все эти науки устанавливают причины наблюдаемых в природе явлений, но устанавливают их не непосредственно, а путем умозаключений, косвенно, а потому и причины эти могут иметь только гипотетический характер. "Исходя из видимых нами свойств, мы можем посредством умозаключений познать, что могли существовать те или иные причины этих свойств. Мы называем этот вид доказательства доказательством а posteriori, а науку, применяющую этот метод, - физикой. Поскольку, однако, при познании явлений природы, имеющих своей основой движение, нельзя делать заключений от последующего к предыдущему без знания тех следствий, к которым ведет определенная форма движения, и нельзя делать заключений относительно следствий движения без знания количества, т.е. без геометрии, то и физик необходимым образом вынужден пользоваться кое-где в своей науке методом доказательства а priori. Вот почему физика - я имею в виду настоящую физику, построенную на математике, - обычно причисляется к прикладным математическим наукам".

Мысль о том, что физические законы могут быть в такой же мере результатом конструкции, как и законы математические, чужда Гоббсу, приверженцу английской философской традиции с характерным для нее эмпиризмом. В этом пункте Гоббс не разделяет стремления Галилея конструировать не только математические объекты, но и физические.

Вслед за Галилеем идею конструкции физического объекта поддержал Декарт. В конце IV книги "Начал" Декарт пишет: "Я почту себя удовлетворенным, если объясненные мною причины (выше он говорит: "придуманные мною".- П.Г.) таковы, что все действия, которые могут из них произойти, окажутся подобными действиям, замечаемым нами в явлениях природы..." Хотя и очень осторожно, и со множеством оговорок, но Декарт здесь защищает идею конструкции применительно также и к физике.

Решительное сближение естествознания с математикой на основе конструкции понятий как той, так и другой ветви наук уже в конце XVIII в. произвел Кант. "Ясность для всех естествоиспытателей, - пишет Кант, - возникла тогда, когда Галилей стал скатывать с наклонной плоскости шары с им самим избранной тяжестью, когда Торричелли заставил воздух поддерживать вес, который, как он заранее предвидел, был равен весу известного ему столба воды... Естествоиспытатели поняли, что разум видит только то, что сам создает по собственному плану, что он с принципами своих суждений должен идти впереди согласно постоянным законам и заставлять природу отвечать на его вопросы, а не тащиться у нее словно на поводу, так как в противном случае наблюдения, произведенные случайно, без заранее составленного плана, не будут связаны необходимым законом, между тем как разум ищет такой закон и нуждается в нем".

Какова же в этом вопросе позиция Лейбница? Ему, как можно видеть по многим его высказываниям, были хорошо знакомы как произведения Гоббса, так и работы Спинозы. С сочинениями Гоббса Лейбниц был знаком еще с парижского периода (1672-1676). "Некоторые произведения Гоббса,- пишет французский историк математики Рене Татон, - оказывают равно глубокое впечатление на него на протяжении этого (парижского. - П.Г.) периода, как в философском плане, так и с точки зрения чисто научной". Сочинения Спинозы также были известны Лейбницу, многие из них он знал досконально; в 1678 г. он получил "Этику" сразу же после ее выхода в свет и написал к ней критические замечания.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже