Реактор А стал в СССР и первым крупным промышленным реактором, и первым крупным экспериментальным реактором после самого первого реактора Ф-1, на котором Курчатов получил цепную ядерную реакцию. Реактор имел 1168 топливных каналов (ТК) и диаметр 9,4 м (см. [20], c.249). Такую сложную и крупную техническую систему не могли создать только для экспериментов и отработок конструкций. На нём пришлось, и создавать плутоний для первой бомбы, и учиться работать, и отрабатывать новые технологии управления, обслуживания, ремонта, утилизации отходов, защиты персонала. Технологии эти вначале оказались совершенно не отработанными. Например, как-то управлять процессом размножения быстрых нейтронов в реакторе оказалось невозможно: при возникновении цепной реакции с коэффициентом их размножения более 1, – нарастание числа нейтронов в геометрической прогрессии и, как следствие, процесса деления атомных ядер шло настолько быстро, что никакими устройствами невозможно было управлять этим процессом, переходящим во взрыв. При возникновении цепной реакции на быстрых нейтронах их количество нарастало лавинообразно по законам геометрической прогрессии. Условно: нейтрон делил атомное ядро, и при этом образовывались два новые нейтрона, которые делили уже 2 атома с выходом уже 4-х нейтронов и т. п. Нейтроны двигаются с огромными скоростями и проходят расстояние до столкновения с ядром в миллиардные доли секунды. Конечно, основание прогрессии (2 или какое-то другое число более 1) зависело от многих факторов. В «докритических» массах ядерной взрывчатки коэффициент размножения нейтронов не превышал 1 из-за большой потери нейтронов, которые уходили во внешнюю среду из объёма заряда. Но если поставить в реакторной сборке замедлитель нейтронов и уменьшить их пробег для взаимодействия с ядрами урана, а снаружи поставить отражатель, который вернёт назад часть нейтронов, – тогда можно запустить цепную реакцию в сборке с природным ураном. Запустить процесс цепной реакции можно путём увеличения числа нейтронов – это достигается удалением из зоны реактора стержней из поглощающих нейтроны материалов. А эффективно управлять реактором можно только путём регулировки потока «запаздывающих нейтронов», процесс нарастания которых идёт существенно медленнее, чем у быстрых нейтронов. Запаздывающие нейтроны вылетали из продуктов деления с запаздыванием от 0,1 до 55 секунд (преимущественно в интервале 0,2–10 с) и из-за относительно небольшой скорости нарастания их количества, можно было успевать управлять процессом размножения. Запаздывающие нейтроны испускаются не при делении ядер уранового топлива, а при делении «метастабильных» продуктов его ядерного распада, – т. е. продуктов с малыми периодами полураспада. Поэтому нейтроны и запаздывают. Из-за большого среднего времени жизни запаздывающего нейтрона более 0,1 с, скорость нарастания цепной реакции от запаздывающих нейтронов достаточно мала, и её можно регулировать. На практике для регулировки реакторов применяют устройства, обеспечивающие коэффициент размножения запаздывающих нейтронов (в отношении к их числу) за среднее время одного деления не более 0,003.
Процесс управления является достаточно сложным и требует строгого соблюдения мер безопасности с целью предотвращения цепной реакции на быстрых нейтронах из-за того, что количество запаздывающих нейтронов невелико относительно общего числа нейтронов (порядка 1–2 %). Скорости нейтронов и, как следствие, их пробег вероятность поглощения атомами урана, зависят от их энергии, – они изменяются в достаточно широких пределах от 5 до десятков тысяч км в с. Конечно, при таких скоростях межатомные расстояния нейтроны преодолевают очень быстро, но, всё же, с разным временем и с разной длиной пробега внутри вещества. От длины пробега нейтрона до поглощения или «взаимодействия» с топливом или отражателем (до отражения или до ядерной реакции с участием этого нейтрона) зависит «сечение» реакции – вероятность деления нейтроном атомов вещества в конкретном топливе и с конкретным отражателем.
Часть проблем возникла из-за новизны техники, недопонимания физических процессов в реакторах, а часть проблем оказалась следствием ещё низкой культуры производства и низкой квалификации персонала. Ещё недостаточно были разработаны конструкции и процессы, обеспечивающие безопасность реакторов и защиту персонала, – многие такие конструкции вначале просто отсутствовали. Например, отсутствовали специальные машины для перегрузки топливных блоков, а операции производились с помощью мостовых кранов (причём не сразу догадались защитить кабины крановщиков от проникающей радиации и извлекать сборки не открытыми, а сразу извлекать их в трубы, ослабляющие действие радиации). Все эти трудные проблемы не удалось решить сразу, но постепенно их решили.