В одном эксперименте было показано, что время темновой адаптации совпадает со временем восстановления родопсина и зависит от освещенности, предшествующей темновой адаптации. Однако ее глубина связана не только с восстановлением родопсина, но и с межклеточной регуляцией, подавлением одних клеток и включением других.
Белок родопсин связан с молекулой 11-цис-ретиналя – формой витамина А.
Неспособность к темновой адаптации наблюдается при дефиците витамина А, но он должен быть выраженным. В настоящее время встречается в странах Африки, где по-прежнему служит частой причиной слепоты у детей, которую можно было бы предотвратить. Витамин А содержится в зеленых, красных и желтых овощах. Кроме неспособности к темновой адаптации дефицит витамина А ведет к нарушению увлажнения глаза, что тоже опасно для зрения.
Мнение, что морковь полезна для зрения, относится только к той редкой ситуации, когда присутствует дефицит витамина А, однако в обывательских кругах морковь – общепризнанное средство от всех глазных болезней. В большинстве случаев она никак не влияет на зрение и специально есть ее не надо.
RHO-ген кодирует белок родопсин. Одно из состояний, возникающих при мутации в этом гене, называется врожденной стационарной ночной слепотой (CSNB – Congenital Stationary Night Blindness), заболевание проявляется в неспособности к темновой адаптации и ночной слепоте. Люди, страдающие таким заболеванием, жалуются на то, что не могут ориентироваться в сумерках. Это непрогрессирующее редкое заболевание. Только одна форма CSNB происходит из-за изменений в гене RHO (есть формы, связанные с другим типом наследования). В этом случае родопсин функционирует, как если бы глаз находился в состоянии постоянного яркого освещения, – мозг не воспринимает постоянную исходящую импульсацию, что проявляется в симптомах ночной слепоты.
Однако чаще изменения в гене RHO ведут к более тяжелому заболеванию – пигментному ретиниту (см. стр. 117). Мы обсудим его, когда будем говорить об офтальмологии будущего. Под пигментным ретинитом специалисты договорились понимать заболевания сетчатки с характерной клинической картиной, чаще проявляющейся в прогрессирующем поражении фоторецепторов сетчатки и изменении глазного дна – отложении пигмента. Причиной заболевания могут быть разные мутации, и протекать оно может с разными степенью тяжести и временем начала, поэтому под пигментным ретинитом подразумевают группу заболеваний. В отличие от врожденной стационарной ночной слепоты пигментный ретинит – прогрессирующее заболевание, ведущее к тяжелым нарушениям зрения. Мы до сих пор до конца не понимаем, почему некоторые мутации ведут к пигментному ретиниту, а другие – к врожденной стационарной ночной слепоте. Считается, что большинство случаев пигментного ретинита связано с мутациями в гене RHO; они проявляются в виде снижения зрения в сумерках, что влечет потерю способности к ориентации при слабом освещении и постепенное сужение полей зрения – развитие туннельного зрения. На момент написания этих строк адекватного лечения этих двух заболеваний нет, но перспективы мы обсудим в главе «Офтальмология будущего».
Родопсин – универсальный пигмент ночной адаптации для многих позвоночных, но есть и интересные исключения.
Рис. 23. Пигментный ретинит
Дневные ящерицы в ходе эволюции утратили палочки, поскольку в условиях постоянной дневной жизни они не нужны. Эволюция убирает всё лишнее. Если вы активны только днем, то фоторецепторы, которые не работают (палочки), просто занимают полезное место в сетчатке. Сетчатка таких ящериц содержит лишь колбочки, максимально чувствительные к разным спектрам дневного света. Напомню, что для работы колбочек нужно хорошее освещение и в сумерках они перестают функционировать.
Один вид гекконов решил жить ночью. Они, конечно, не принимали такого решения на общем собрании. Обстоятельства сложились так, что, возможно, корм перешел на ночной образ жизни – гекконы стали больше есть ночью, и их вид стал отделяться от дневных собратьев. Однако палочки, столь необходимые для ночной жизни, уже были утрачены их предками, когда они бодрствовали только днем. Сделать новые палочки гекконы не успели, но приспособили для ночного зрения колбочки – у ночного геккона они больших размеров, чем у их дневных братьев, что позволяет им быть чувствительнее. Постепенно у ночных гекконов появилось еще два пути адаптации к тому, чтобы видеть в темноте. Роговица ночного геккона имеет несколько оптических зон, то есть оптическая сила роговицы изменяется в разных отделах, благодаря чему гекконы могут фокусировать разные спектры видимого им света на поверхности сетчатки идеально четко. Это помогает нивелировать хроматические аберрации и способствует более высокой разрешающей способности глаза к разным спектрам видимого гекконам света (я специально пишу «видимого гекконам», потому что видимые спектры света для геккона и человека разные).