Ну и как же все это соотносится с нашей шваброй, точнее, со шваброй Витгенштейна? Где тут световые скорости и виртуальные частицы? Зона неопределенности, расположенная между щеткой и шваброй, имеет собственную репрезентативную модель – поиск в сознании, в котором мы обнаруживаем нечто отдаленно похожее на облако виртуальных частиц или на чертовщину – кто какой термин предпочитает. Итак, «Принеси мне палку и щетку, в которую она воткнута». Этим обращением вводится интервал неопределенности «Что бы это значило?». Интервал заканчивается уточняющим (в данном случае «расточняющим») вопросом «Что ты имеешь в виду?» и внутри интервала могут происходить различные события. Например, быстрый лихорадочный поиск, в ходе которого может быть обнаружена и швабра – что, однако, не отменяет уточняющего опроса, различные предположения: «Может, русский у него не родной? А может, огреть его палкой по спине – так ведь, кажется, дается просветление в чань-буддизме?» Чаще всего происходит погружение в ступор, как правило, очень краткосрочный и, возможно, совпадающий, если изменить масштаб времени, с тем промежутком, когда электрон пребывает между орбитами или когда кварки свободны, а не связаны в устойчивую комбинацию по имени «протон» (или «нейтрон»). Говоря чисто спекулятивно, если бы сознание могло проникнуть в масштабы планковской длины, чего бы оно там только ни повидало…
Воспользовавшись репрезентативной моделью швабры Витгенштейна, мы можем высказать аргументы в пользу квантовой природы сознания. По отношению к пониманию это давно уже установили феноменология (Гуссерль, Мамардашвили, Пятигорский) и психология (Л. М. Веккер), описывая прорывы понимания как «ага-эффект», «инсайт» или как «всегда уже понимаю».
Ну а в мире самих вещей встречаются недошвабры и их аналоги? Несомненно, но только среди заготовок или среди хлама, а стало быть, в статусе «Еще не вещь» или «Уже не вещь». Там и вправду может оказать щетка с торчащими из нее обломками палки и жалкими остатками щетины, но даже в этом случае ближайшим обобщающим классом, к которому относится сей предмет, будет именно «хлам», а не класс щеток или, скажем, вещей домашнего обихода.
С другой стороны, поскольку Гамлет был все-таки прав и есть многое на свете, что и не снилось нашим мудрецам, – особенно в масштабах планковской длины, то тут могут встретиться и химеры, являющиеся возможными долгожителями иных миров.
Вспоминаются арт-объекты вроде чайной ложечки, покрытой мехом, или знаменитых очков для влюбленных
Рис. 1. Очки для влюбленных. В них можно смотреть только друг другу в глаза
Тут могла бы быть и двойная зубная щетка, чтобы не наносить пасту дважды
Рис. 2. Двойная зубная щетка
А также и щетка, в которую воткнута палка, но почему-то со стороны щетины
Рис. 3. Щетка, в которую воткнута палка
Все это химеры планковского интервала в реальном мире, однако в качестве арт-объектов они могут просуществовать намного дольше, чем швабра в качестве действующего инструмента. И кстати, если исходить из симметрии хронопоэзисов, то ничто не мешает предположить, что и масштабах планковской длины между двумя позициями электронов могут быть зарегистрированы химеры, являющиеся долгожителями каких-нибудь иных миров. Кстати, нечто подобное заподозрил еще Августин:
«Итак, изменчивое в силу самой изменчивости своей способно принимать все формы, через которые, меняясь, проходит изменчивое. Что это такое? Душа? Тело? Некий вид души или тела? Если бы можно было о ней сказать: “ничто, которое есть нечто” и “есть то, чего нет”, – я так и сказал бы»[25].
Все же кажется, что случай со щеткой, в которую вставлена палка, не совсем тот. Ведь перед нами «детально проанализированное предложение», которое затрудняет понимание, вместо того чтобы его облегчать. Однако если вместо требования принести нас попросят дать определение швабры, мы, вполне возможно, согласимся с детально проанализированным предложением «Палка и щетка, в которую она воткнута». Скорее всего, мы сочтем его не научным, а житейским; житейским же определениям свойственно пребывать в скрытом состоянии, они озвучиваются куда реже, чем научные, и, опять-таки, в некоторых специальных ситуациях. Но ясно, что швабра Витгенштейна и здесь является показательным примером.