Как бы там ни было, но в 1953 году появилось достоверное документальное свидетельство подобной трансформации. Ныне производство искусственных алмазов стало по-настоящему крупным бизнесом, и все же настоящие, природные алмазы вне конкуренции. Причин тому несколько. Во-первых, несмотря на то, что изготовление небольших искусственных алмазов обходится дешевле, чем добыча соразмерных им природных камней, все же первые, как правило, имеют изъяны, в частности непрозрачные включения: ускоренный промышленный цикл приводит к дефектам, которые в свою очередь вызывают пигментацию. На деле искусственно выращивают по большей части не ювелирные, а технические алмазы: алмазной пылью покрывают буры и другие режущие инструменты – не ради красоты, но чтобы резать и обрабатывать гранит и прочие твердые материалы. Во-вторых, подлинность составляет большую долю в общей ценности алмаза. Когда вы предлагаете руку и сердце, важно, чтобы в обручальном кольце сиял бриллиант, рожденный в глубинах Земли миллиарды лет назад, пусть даже по физическим свойствам искусственный камень ни в чем ему не уступает. Наконец, в-третьих, если вы сверхрациональный субъект, которого не трогает природная история камня, то для вас искусственный бриллиант слишком дорогой способ украсить возлюбленную. Есть немало гораздо более дешевых суррогатов, которые своим ослепительным блеском обманут кого угодно, кроме разве настоящих знатоков бриллиантов. К таким суррогатам относятся кубические кристаллы циркония и даже стекло. Впрочем, природные алмазы потерпели новое поражение: выяснилось, что алмаз больше не является самым твердым из известных материалов. В 1967 году открыли третий способ организации атомов углерода, который позволял получить еще более твердое вещество. Основу его строения также составляют гексагональные слои графита, но в трехмерной модификации. Считается, что эта структура, под названием лонсдейлит, на 58 % тверже алмаза, хотя в природе она существует в столь малых количествах, что это трудно проверить. Первый образец нашли в метеорите Каньон-Дьябло – сильный жар и повышенное давление, возникшие при ударе о Землю, вызвали превращения графита. В мире не существует ни одного обручального кольца из лонсдейлита, поскольку падения метеоритов этого типа происходят чрезвычайно редко и производят на свет лишь крошечные кристаллы, но открытие третьей структуры углерода неизбежно подводило к вопросу о возможной четвертой структуре – в дополнение к уже известным кубической (алмаз), шестиугольной (каменный и древесный уголь, гагат, графит) и трехмерной шестиугольной (лонсдейлит). Вскоре, благодаря авиационной промышленности, список пополнился еще одной синтетической структурой.
Первые летательные аппараты делали из дерева, легкого и крепкого. Одним из самых быстрых самолетов Второй мировой войны был почти полностью деревянный истребитель-бомбардировщик «Москито». Однако деревянная конструкция, как правило, страдает недостатками, так что построить из дерева корпус летательного аппарата весьма сложно. А поскольку авиастроители не думали отказываться от своих честолюбивых планов, конструкторы переключились на легкий металл алюминий. Последний, однако, нельзя назвать сверхлегким, и в глубине души инженеры надеялись обрести еще более прочный и легкий материал. Казалось, в природе ничего подобного не существует, поэтому в 1963 году инженеры из британского Королевского авиационного управления в Фарнборо решили его изобрести.
Углеродное волокно, как назвали они свое детище, было получено из графита, сплетенного в тонкие нити, при этом ученые максимально использовали огромную прочность и жесткость шестиугольных слоев. Как всегда в случае с чистым графитом, структурная зависимость от сил Ван-дер-Ваальса делала его уязвимым. Впрочем, покрытие волокон эпоксидным клеем решило проблему. Так родился углепластик, новый композиционный материал на основе углеродного волокна.