Читаем Из чего это сделано? Удивительные материалы, из которых построена современная цивилизация полностью

Ключ к решению был найден с открытием четвертой углеродной структуры, которая, в свою очередь, обнаружилась в самом, казалось бы, неподходящем месте – в пламени свечи. В 1985 году профессор Харольд Крото и его научный коллектив пришли к выводу, что внутри пламени свечи атомы углерода волшебным образом самоорганизуются в группы ровно по шестьдесят штук, образуя макромолекулы углерода. Эти молекулы выглядели словно гигантские футбольные мячи и были названы бакиболами (или фуллеренами) в честь архитектора Бакминстера Фуллера, изобретателя геодезического купола тоже гексагональной структуры. За это открытие научный коллектив профессора Крото получил в 1996 году Нобелевскую премию в области химии, а также привлек всеобщее внимание к тому факту, что микроскопический мир может содержать большое разнообразие неизвестных нам до поры до времени углеродных структур.



Молекулярная структура фуллеренов


В считаные дни углерод стал одной из самых горячих тем в материаловедении, и вскоре появился новый вид углерода, из которого можно было сделать трубочки диаметром всего в несколько нанометров. При всей сложности молекулярной архитектуры эти углеродные нанотрубки обладали редкой способностью к самоорганизации. Без всякой посторонней помощи и высокотехнологичного оборудования они принимали самые замысловатые формы в свечном дыму. Это новое знание было сродни открытию бактерий: мир неожиданно оказался куда более непростым и причудливым местом, чем мы думали раньше. Не только живые организмы, как выяснилось, умеют самоорганизовываться в сложные структуры, но и неживые тоже! Всех охватило страстное желание творить и исследовать наномолекулы. Нанотехнология вошла в моду.



Молекулярная структура углеродных трубок


Углеродные нанотрубки похожи на миниатюрные углеродные волокна, только без слабых связей Ван-дер-Ваальса. Выяснилось, что у них самое высокое отношение прочности к весу среди материалов планеты. Значит, потенциально они достаточно прочны, чтобы построить из них космический лифт. Проблема решена? Не совсем. В длину углеродные нанотрубки имеют самое большее несколько сотен нанометров, в то время как их практическое применение требует длины в несколько метров. В настоящее время сотни исследовательских коллективов по всему миру работают над решением этой задачи. Но команда Андрея Гейма не принадлежит к их числу.

Андрей и его коллеги задались вопросом попроще: если все эти новые формы углерода основаны на гексагональной структуре графита, а графит заполняет слои гексагонального углерода, почему не считать сам графит чудесным материалом? Ответ: потому что эти слои слишком неплотно прилегают друг к другу, и это ослабляет материал. Тогда что будет, если взять лишь один слой гексагонального углерода? Какой выйдет материал?

…Когда Андрей Гейм вернулся с кофе на подносе, я все еще держал на ладони его золотую нобелевскую медаль, чувствуя себя слегка виноватым, хотя он сам дал мне ее посмотреть. Поставив поднос на стол, он забрал у меня медаль и протянул вместо нее кусок чистого графита из рудников графства Камбрия. Гейм сказал, что взял его прямо из шахты, расположенной, выражаясь географически, к северу от его кабинета в Манчестерском университете. Потом он показал, как его научно-исследовательская группа изготовила одинарный слой гексагонального углерода.

Андрей отрезал кусок липкой ленты, прижал к графиту, отдернул – на пленке остался тончайший блестящий металлический отпечаток. Он взял еще один отрезок ленты, прижал его к блестящему отпечатку на первом отрезке и отдернул. Теперь отпечаток разделился надвое. Повторив процедуру пять-шесть раз, Гейм получал все более тонкие слои графита. Наконец он объявил, что получил слой графита толщиной всего в один атом. Я посмотрел на отрезок скотча у него в руках. На нем было несколько темных смазанных пятнышек. Боясь упустить что-то важное, я присмотрелся внимательнее. «Разумеется, – улыбнулся Андрей, – его нельзя увидеть. Он слишком мал и поэтому невидим».

Я усиленно закивал, когда Гейм предложил пройти к микроскопу в соседнюю комнату, где можно было бы увидеть эти одноатомные слои графита.

Андрей и его коллега получили Нобелевскую премию не за то, что создали одинарный слой графита, а за то, что продемонстрировали исключительные, даже по меркам нанотехнологий, свойства этих слоев, которые заслужили собственное наименование – графен.

Начнем с того, что графен – это самый тонкий, прочный и жесткий материал в мире. Он проводит тепло быстрее, чем любой другой известный материал, и он проводит больше электроэнергии, быстрее и с меньшим сопротивлением, чем любой другой материал.



Молекулярная структура графена


Перейти на страницу:

Похожие книги

Тринадцать вещей, в которых нет ни малейшего смысла
Тринадцать вещей, в которых нет ни малейшего смысла

Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки. Не случайно один из критиков назвал Майкла Брукса «Индианой Джонсом в лабораторном халате».Майкл Брукс — британский ученый, писатель и научный журналист, блистательный популяризатор науки, консультант журнала «Нью сайентист».

Майкл Брукс

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука / Документальное