Читаем Избранные научные труды полностью

В этом случае нужно следить за тем, чтобы середина вертикальной линии, соединяющей центр спирали с осью телескопа, находилась на одной высоте со струёй. Если это условие выполнено, то, как показывает более тщательное рассмотрение, две вертикальные плоскости, проходящие соответственно через ось струи и через ось телескопа, будут взаимно перпендикулярны. При этом последняя плоскость как раз пересекает пучность волны, когда вертикальная волосяная нить проходит через середину яркой линии, занимающей положение малой оси эллипса.

Поскольку амплитуда колебаний вследствие вязкости жидкости убывает по мере удаления от отверстия, расстояние OA от струи до фокальной линии не одинаково на всем протяжении струи. Хотя при измерении длины волны на коротком участке струи этот факт не имеет существенного значения, с ним приходится считаться, когда измерения распространяются на участки большой длины. В этом случае фокусировка телескопа должна изменяться в процессе измерения, в результате чего координаты пучностей не удается измерить с такой точностью, как говорилось выше.

Разность двух последовательных показаний прибора даёт расстояние между проекциями соседних пучностей на горизонтальную плоскость. Деля эту разность на cos , где — угол наклона струи к горизонтали в измеряемом месте, получаем истинное расстояние между пучностями. Это расстояние можно считать непосредственно равным искомой длине волны. Действительно, считая ось струи прямолинейной и отвлекаясь от возможных нерегулярностей, можно с большой точностью записать уравнение профиля волны в виде (см. стр. 25)


r=a

+

be

-z

cos kz

+

1

24

·

b^2

a

be

-2z

cos 2kz

+

1

8

·

b^2

a

be

-2z

.


Найдём максимумы этой кривой zn положив r/z=0; приближённо имеем


z

n

-n

k

=-

k^2

-

1

6


b

a


k^2

be

-2zn

.


Первый член в правой части этого равенства есть постоянная величина, а второй член при значениях , k и b/a соответствующих условиям эксперимента, совершенно ничтожен по сравнению с ошибками измерений.

Педерсен также измерял длину волн в струе при очень малых амплитудах. Он указывает 1, что ему не удавалось получить струи с достаточно регулярными колебаниями, чтобы применить описанный им метод измерения длины волны, который в общих чертах сходен с изложенным здесь. По этой причине он использовал другой метод, в основном заключавшийся в следующем. Струя освещалась параллельным пучком лучей, которые, претерпев в струе два преломления и одно отражение, давали на фотопластинке изображение волны; поскольку на этом изображении амплитуда была гораздо большей, чем на самой струе, длину волны можно было измерять непосредственно по изображению. Этим методом длина волны определяется как средняя на отрезке струи большой длины. Однако из описанных ниже экспериментов следует, что очень важно иметь возможность определения отдельных длин волн с достаточной точностью, чтобы судить об изменениях длины волны.

1 См.: Р. О. Pedersen. Phil. Trans. Roy. Soc., 1907, A207, 368.

Получение изображения с помощью струи применялось также при изучении формы струи, о котором говорилось на стр. 29. Если, наблюдая за изображениями в телескопе, поворачивать трубку вокруг оси, то форма этих изображений непрерывно меняется, поскольку изменение кривизны профиля струи (вид сверху) приводит к смещению точек А и В. Наиболее быстрое изменение формы изображений наблюдается при близкой к нулю кривизне профиля. Когда кривизна проходит через нуль, точки А и В совпадают, и в телескопе видно равномерно освещённое правильное эллиптическое пятно. К трубке был прикреплён градуированный диск, по которому отсчитывались показания всякий раз, как только в процессе вращения в телескопе возникало упомянутое светлое пятно. Если струя симметрична относительно двух взаимно перпендикулярных плоскостей, то показания на окружности диска должны обладать такой же симметрией и быть одинаковыми на разных расстояниях от отверстия. Этот метод оказался очень чувствительным; с его помощью удалось обнаружить, что не для всех исследуемых трубок указанное требование выполняется с достаточной степенью точности. Всего было выбрано четыре трубки с удовлетворительными свойствами. То, что создаваемые этими трубками струи совершали исключительно правильные колебания, очень чётко подтверждается измерениями длины волны, о чем речь пойдёт ниже.

В экспериментах струю следовало располагать так, чтобы её плоскостями симметрии были горизонтальная и вертикальная плоскости. Это достигалось поворотом трубки в положение, которому соответствует среднее между двумя показаниями диска, обсуждавшимися ранее.

ФОТОГРАФИРОВАНИЕ СТРУИ

Для измерения величины амплитуды волн были получены увеличенные фотографии струй. Использование монохроматического света и специальные ограничения освещающего пучка позволили с большой чёткостью воспроизвести профиль струи на фотопластинках.

С помощью объект- микрометра измерялся диаметр струи в различных местах фотопластинки. Вследствие большой резкости изображения точность измерения составляла около 0,03% измеряемой величины.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии