Этот взгляд уже ясно высказан в интенсивно ведущейся дискуссия по вопросу о природе света и элементарных составных частей материи. Что касается света, его распространение в пространстве и времени, как известно, адекватно описывается электромагнитной теорией. В частности, интерференционные явления в вакууме и оптические свойства материальных сред всецело управляются принципом суперпозиции волновой теории. Тем не менее сохранение энергии и импульса при взаимодействии излучения с веществом, проявляющееся в фотоэлектрическом эффекте и эффекте Комптона, находит адекватное выражение в выдвинутой Эйнштейном идее световых квантов. Как известно, сомнения в справедливости Принципа суперпозиции, с одной стороны, и законов сохранения — с другой, к которым привело это кажущееся противоречие, отвергнуты прямыми экспериментами. Такая ситуация ясно показывает невозможность причинного пространственно-временно́го описания световых явлений. С одной стороны, в попытке проследить законы пространственно-временно́го распространения света на основе квантового постулата мы ограничены статистическим рассмотрением. С другой стороны, выполнение требования причинности для отдельных световых процессов, характеризуемых квантом действия, вынуждает отказаться от пространственно-временно́го описания. Разумеется, не может быть речи о совершенно независимом применении идей пространственно-временно́го описания и причинности. Две точки зрения на природу света являются скорее двумя различными попытками интерпретации экспериментального материала, в которых ограниченность классических понятий находит взаимно дополняющее выражение.
Проблема природы составных частей материи приводит нас к аналогичному заключению. Индивидуальность элементарных электрических частиц следует из общих эмпирических данных. Тем не менее недавно полученные экспериментальные данные и прежде всего открытие селективного отражения электронов от металлических кристаллов требуют привлечения принципа суперпозиции волновой теории в соответствии с оригинальной идеей Л. де Бройля. Так же как в случае света, в вопросе о природе материи, придерживаясь классических понятий, мы стоим перед неизбежной дилеммой, которая должна рассматриваться как точное выражение эмпирических данных. Действительно, здесь мы имеем дело не с противоречащими, а с дополнительными толкованиями явлений, которые лишь вместе дают естественное обобщение классического способа описания. При рассмотрении этих вопросов надо иметь в виду, что в соответствии с изложенным выше излучение в пустом пространстве, как и изолированные материальные частицы, представляют собой абстракции, поскольку их свойства, согласно квантовой теории, доступны наблюдению и определению только при их взаимодействии с другими системами. Тем не менее эти абстракции, как мы увидим, необходимы для описания данных опыта на основе наших обычных пространственно-временны́х представлений.
Трудности, с которыми сталкивается причинное пространственно-временно́е описание в квантовой теории и которые давно составляют предмет повторяющихся дискуссий, новейшим развитием символических методов выдвинуты в последнее время на первый план. Важным вкладом в проблему последовательного применения этих методов является новая работа Гейзенберга
2. Он указал, в частности, на своеобразную взаимную неопределённость, присущую всем измерениям атомных величин. Прежде чем перейти к рассмотрению его результатов, целесообразно показать, как дополнительная природа описания, проявляющаяся в этой неопределённости, является неизбежной уже при анализе наиболее элементарных понятий, лежащих в основе истолкования опыта.2
W. Неisеnbеrg. Zs. f. Phys., 1927, 43, 172,§ 2. Квант действия и кинематика
Фундаментальное противоречие между квантом действия и классическими понятиями сразу становится очевидным из простых формул, составляющих общую основу теории световых квантов и волновой теории материальных частиц. Если обозначить через ℎ постоянную Планка, то, как известно,
𝐸τ
=
𝐽λ
=
ℎ
,
(1)