Читаем Избранные научные труды. Том 2 полностью

При определении положения с помощью оптических инструментов нужно помнить, что для образования изображения всегда требуется сходящийся пучок света. Обозначая через λ длину волны используемого излучения и через ε — так называемую числовую апертуру, т. е. синус половины угла сходимости, разрешающую способность микроскопа можно представить известным выражением λ/2ε. Даже если предмет освещается параллельным пучком света, так что импульс ℎ/λ падающего кванта известен по величине и направлению, конечное значение апертуры всё же будет мешать точному установлению отдачи, сопровождающей рассеяние. Даже если бы импульс частицы был точно известен до процесса рассеяния, сведения о компоненте импульса, параллельной фокальной плоскости, после наблюдения имели бы неопределённость, составляющую 2 εℎ/λ. Произведение наименьших неточностей, с которыми могут быть установлены пространственная координата и компонента импульса в определённом направлении, поэтому выражается как раз формулой (2). Вероятно, можно думать, что в оценке точности определения положения должна учитываться не только сходимость лучей, но и длина цуга волн, так как частица в течение конечного времени освещения может изменить свое положение. Однако ввиду того факта, что точное знание длины волны света не существенно для указанной выше оценки, легко видеть, что для любого значения апертуры цуг волн может быть выбран настолько коротким, чтобы можно было пренебречь изменением положения частицы за время наблюдения по сравнению с пределами точности определения положения, обусловленными конечной разрешающей способностью микроскопа.

При измерении импульса с помощью эффекта Допплера (с учётом эффекта Комптона) приходится пользоваться параллельным цугом волн. Однако для точности, с которой может быть измерено изменение длины волны рассеянного излучения, существенна протяженность цуга волн в направлении распространения. Если мы полагаем, что направления падающего и рассеянного излучений будут соответственно параллельны или противоположны направлению подлежащих измерению вектора положения и компонент импульса, то мерой точности определения скорости может считаться выражение 𝑐λ/2𝑙 где 𝑙 — длина цуга волн; при этом для простоты скорость света принята здесь большой по сравнению со скоростью частицы. Если 𝑚 — масса частицы, то неопределённость, связанная со значением импульса после наблюдения, равна 𝑐𝑚λ/2𝑙. В этом случае величина отдачи 2ℎ/λ достаточно хорошо определена и не приводит к заметной неопределённости в значении импульса частицы после наблюдения. В самом деле, общая теория эффекта Комптона позволяет рассчитать компоненты импульса в направлении излучения до и после отдачи по разности длин волн падающего и рассеянного излучений. Даже если бы начальные значения пространственных координат частицы были точно известны, наше знание положения после наблюдения будет содержать неопределённость. Действительно, вследствие невозможности приписать отдаче точный момент времени, мы знаем среднюю скорость в направлении наблюдения в течение процесса рассеяния только с точностью 2ℎ/𝑚λ Следовательно, неопределённость положения после наблюдения достигает 2ℎ𝑙/𝑚λ. И здесь произведение неточностей в измерении положения и импульса выражается, таким образом, общей формулой (2).

Так же как в случае определения положения, длительность процесса наблюдения при измерении импульса может быть сделана сколь угодно короткой, если только пользоваться излучением достаточно короткой длины волны. Тот факт, что отдача становится тогда больше, как мы видели, не влияет на точность измерения. Следует отметить далее, что, говоря неоднократно о скорости частицы, мы имели в виду в данном случае только связь с обычным пространственно-временны́м описанием. Как уже явствует из упомянутых выше соображений де Бройля, понятием скорости в квантовой теории надо пользоваться с осторожностью. Мы увидим также, что однозначное определение этого понятия исключается и квантовым постулатом; это следует особенно помнить при сравнении результатов последовательных наблюдений. В самом деле, положение некоторого объекта в два заданных момента времени может быть измерено с любой желаемой точностью; но если из таких измерений мы хотим обычным путём рассчитать скорость объекта, то мы должны ясно представлять себе, что мы имеем дело с некоторой абстракцией, из которой нельзя получить никакой однозначной информации о прошлом или будущем поведении объекта.

Перейти на страницу:

Все книги серии Классики науки

Жизнь науки
Жизнь науки

Собрание предисловий и введений к основополагающим трудам раскрывает путь развития науки от Коперника и Везалия до наших дней. Каждому из 95 вступлений предпослана краткая биография и портрет. Отобранные историей, больше чем волей составителя, вступления дают уникальную и вдохновляющую картину возникновения и развития научного метода, созданного его творцами. Предисловие обычно пишется после окончания работы, того труда, благодаря которому впоследствии имя автора приобрело бессмертие. Автор пишет для широкого круга читателей, будучи в то же время ограничен общими требованиями формы и объема. Это приводит к удивительной однородности всего материала как документов истории науки, раскрывающих мотивы и метод работы великих ученых. Многие из вступлений, ясно и кратко написанные, следует рассматривать как высшие образцы научной прозы, объединяющие области образно-художественного и точного мышления. Содержание сборника дает новый подход к сравнительному анализу истории знаний. Научный работник, студент, учитель найдут в этом сборнике интересный и поучительный материал, занимательный и в то же время доступный самому широкому кругу читателей.

Сергей Петрович Капица , С. П. Капица

Научная литература / Прочая научная литература / Образование и наука
Альберт Эйнштейн. Теория всего
Альберт Эйнштейн. Теория всего

Альберт Эйнштейн – лауреат Нобелевской премии по физике, автор самого известного физического уравнения, борец за мир и права еврейской нации, философ, скрипач-любитель, поклонник парусного спорта… Его личность, его гений сложно описать с помощью лексических формул – в той же степени, что и создать математический портрет «теории всего», так и не поддавшийся пока ни одному ученому.Максим Гуреев, автор этой биографии Эйнштейна, окончил филологический факультет МГУ и Литературный институт (семинар прозы А. Г. Битова). Писатель, член русского ПЕН-центра, печатается в журналах «Новый мир», «Октябрь», «Знамя» и «Дружба народов», в 2014 году вошел в шорт-лист литературной премии «НОС». Режиссер документального кино, создавший более 60-ти картин.

Максим Александрович Гуреев

Биографии и Мемуары / Документальное
Капица. Воспоминания и письма
Капица. Воспоминания и письма

Анна Капица – человек уникальной судьбы: дочь академика, в юности она мечтала стать археологом. Но случайная встреча в Париже с выдающимся физиком Петром Капицей круто изменила ее жизнь. Известная поговорка гласит: «За каждым великим мужчиной стоит великая женщина». Именно такой музой была для Петра Капицы его верная супруга. Человек незаурядного ума и волевого характера, Анна первой сделала предложение руки и сердца своему будущему мужу. Карьерные взлеты и падения, основание МИФИ и мировой триумф – Нобелевская премия по физике 1978 года – все это вехи удивительной жизни Петра Леонидовича, которые нельзя представить без верной Анны Алексеевны. Эта книга – сокровищница ее памяти, запечатлевшей жизнь выдающегося ученого, изменившего науку навсегда. Книга подготовлена Е.Л. Капицей и П.Е. Рубининым – личным доверенным помощником академика П.Л. Капицы, снабжена пояснительными статьями и необходимыми комментариями.

Анна Алексеевна Капица , Елена Леонидовна Капица , Павел Евгеньевич Рубинин

Биографии и Мемуары / Документальное

Похожие книги

Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука