Согласно приведённым выше рассуждениям относительно возможностей определения свойства объектов, обсуждение точности измерения положения и импульса частицы, очевидно, нисколько не будет отличаться, если вместо рассеяния излучения мы обратимся к рассмотрению столкновений с другими материальными частицами. В обоих случаях мы видим, что рассматриваемая неопределённость в равной мере присуща как описанию средств измерения, так и описанию объекта. Действительно, этой неопределённости нельзя избежать при описании поведения объектов по отношению к координатной системе, определённой обычным путём с помощью твердых тел и невозмущаемых часов. Условия эксперимента — открывания и закрывания диафрагм и т. д. — позволяют сделать заключения только о пространственно-временно́й протяженности связанных с ним волновых полей.
Возвращаясь от наблюдений к нашим ощущениям, мы ещё раз должны учитывать квантовый постулат в связи с восприятием средства наблюдения — будет ли это путём непосредственного действия на глаз или с помощью соответствующего вспомогательного средства, как фотографическая пластинка, камера Вильсона и т. д. Однако легко видеть, что привносимый при этом статистический элемент не будет влиять на неопределённость в описании объекта. Можно было бы даже предполагать, что произвол в том, что считать объектом и что — средством наблюдения, открывает возможность совершенно избежать этой неопределённости. В связи с измерением положения частицы можно, например, поставить вопрос: нельзя ли определить импульс, передаваемый при рассеянии, с помощью закона сохранения импульса по измерению изменения импульса, испытываемого микроскопом (вместе с источником света и фотографической пластинкой) во время процесса наблюдения. Однако более подробное исследование показывает, что такое измерение невозможно, если мы одновременно хотим знать с достаточной точностью положение микроскопа. В самом деле, из опытов, которые нашли выражение в волновой теории материи, следует, что положение центра тяжести какого-либо тела и его полный импульс могут быть определены только в пределах точности, задаваемых формулой (2).
Строго говоря, понятие наблюдения принадлежит именно причинному пространственно-временно́му способу описания. Однако вследствие общего характера соотношений (2) это понятие может быть последовательно применено и в квантовой теории, если только принять во внимание неопределённость, выражаемую этими соотношениями. Как было отмечено Гейзенбергом, можно получить поучительную иллюстрацию квантово-теоретического описания атомных (микроскопических) явлений, сравнивая эту неопределённость с неопределённостью, обусловленной несовершенством измерений, свойственным любому наблюдению при обычном описании явлений природы. Он замечает в этой связи, что даже в случае макроскопических явлений можно в некотором смысле сказать, что они возникают вследствие повторных наблюдений. Однако нельзя забывать, что в классических теориях каждое последующее наблюдение позволяет предсказать будущие события со всё возрастающей точностью, так как это улучшает наше знание начального состояния системы. Согласно квантовой теории, именно невозможность пренебречь взаимодействием с измерительными средствами означает, что каждое наблюдение вводит новый неконтролируемый элемент. В самом деле, из предыдущего рассмотрения видно, что измерение пространственных координат частицы сопровождается не только конечным изменением динамических переменных; фиксация её положения означает также полный разрыв с причинным описанием её динамического поведения, тогда как определение импульса частицы всегда предполагает отсутствие знаний о её пространственно-временно́й эволюции. Эта ситуация чрезвычайно ясно показывает дополнительный характер описания атомных явлений, который выступает как неизбежное следствие противоречия между квантовым постулатом и разграничением объекта и средства наблюдения, свойственным самой идее наблюдения.
§ 4. Принцип соответствия и матричная теория
До сих пор мы рассматривали только некоторые общие черты квантовой проблемы. Однако суть дела заключается в том, что особое значение имеет формулировка законов взаимодействия объектов, символизированных абстрактными образами изолированных частиц и излучения. Отправные пункты такой формулировки дала прежде всего проблема строения атома. Здесь, как известно, оказалось возможным осветить существенные аспекты экспериментальных данных путём элементарного использования классических понятий в сочетании с квантовым постулатом. Например, опыты с возбуждением спектров электронным ударом или излучением находят адекватное объяснение на основе предположения о дискретных стационарных состояниях и индивидуальных процессах перехода. Это прежде всего обусловлено тем обстоятельством, что в этих вопросах не требуется более детального описания пространственно-временно́го поведения процессов.