Теория теплового излучения Эйнштейна, подтверждая приведённые выше постулаты, подчёркивает в то же время формальную природу условия частот. Из условий теплового равновесия Эйнштейн выводит заключение, что всякий процесс поглощения и излучения сопровождается передачей количества движения ℎν/𝑐 где 𝑐 — скорость света, как и следовало ожидать на основании представления о световых квантах. Значение этого вывода было подчёркнуто интересным открытием Комптона, который нашёл, что рассеяние монохроматических рентгеновских лучей сопровождается изменением длины волны рассеянного излучения, причём это изменение зависит от направления, в котором наблюдаются рассеянные лучи. Такое изменение частоты непосредственно следует из теории световых квантов, если при расчёте отклонения кванта принять во внимание законы сохранения энергии и количества движения.
Противоречие между волновой теорией света, применяемой для объяснения оптических явлений, и теорией световых квантов, которая хорошо объясняет многие особенности взаимодействия света с веществом, всё увеличивалось и привело к мысли, что недостаточность классической теории может даже отразиться на справедливости законов сохранения энергии и количества движения. Эти законы, которые занимают центральное положение в классической теории, могли бы иметь лишь статистический смысл при описании атомных процессов. Однако такое допущение не даёт удовлетворительного разрешения дилеммы, как показывают опыты по рассеянию рентгеновских лучей, произведённые недавно с помощью изящных методов, позволяющих непосредственно наблюдать индивидуальные процессы. Гейгеру и Боте удалось показать, что электроны отдачи, сопровождающие рассеянное излучение, и фотоэлектроны, появляющиеся при поглощении его, попарно соответствуют друг другу, как и следует ожидать на основании теории световых квантов. Комптон и Саймон доказали в экспериментах с камерой Вильсона, что существует не только попарное соответствие электронов, но и требуемая теорией световых квантов зависимость между направлением, в котором наблюдается рассеянное излучение, и направлением скорости электронов отдачи, сопровождающих это рассеяние.
Из этих результатов следует, по-видимому, что в общей проблеме квантовой теории приходится иметь дело не только с видоизменением механических и электродинамических теорий, которое может быть выражено при помощи обычных физических представлений, но и с существенным недостатком пространственно-временны́х образов, на которых было основано до сих пор описание явлений природы. Этот недостаток выявляется при ближайшем рассмотрении соударений. Именно для соударений, продолжительность которых мала по сравнению с естественными периодами атома и для которых можно было бы ожидать очень простых результатов на основании обычных механических представлений, оказывается, что постулат стационарных состояний, по-видимому, несовместим с пространственно-временны́м описанием столкновения, основанным па современном учении о строении атомов
1.1
Более подробное обсуждение этих вопросов имеется в статье автора (см., в особенности, приложение): Zs. f. Phys., 1925, 34, 142 (статья 27 тома I. —ПРИНЦИП СООТВЕТСТВИЯ
Тем не менее оказалось возможным построить такие механические образы стационарных состояний, которые основаны на ядерной модели атома и которые сыграли существенную роль в объяснении специфических свойств элементов. В простейшем случае атома с одним электроном, каковым является нейтральный атом водорода, орбита электрона представляет собой согласно классической механике замкнутый эллипс, подчиняющийся законам Кеплера. Согласно этим законам большая ось и частота обращения связаны простой зависимостью с работой, которую нужно затратить для полного разделения образующих атом частиц. Если считать, что спектральные термы атома водорода характеризуют эту работу, то спектр даёт нам указание на существование ряда последовательных процессов, во время которых электрон связывается атомом всё сильнее, переходя на орбиты всё меньших размеров и испуская при этом излучение. Когда электрон связан сильнее всего и поэтому атом не может излучать, то достигнуто нормальное состояние атома. Размеры орбиты, вычисленные по спектральным термам, имеют величину того же порядка, что и размеры атомов, полученные на основании механических свойств элементов. Но согласно самому характеру постулатов такие механические характеристики, как частота обращения и форма электронных орбит, не могут сравниваться с результатами опытов. Символический характер этих образов лучше всего виден из того обстоятельства, что атом в нормальном состоянии вовсе не излучает, хотя согласно механическим представлениям электрон продолжает двигаться.