Поскольку однородность Земли исключается наблюдениями, для определения её фигуры необходимо рассматривать море как бы покрывающим некоторое ядро, плотность слоёв которого уменьшается от центра к поверхности. В своей прекрасной работе о фигуре Земли Клеро показал, что равновесие возможно также, если предположить эллиптическими фигуру её поверхности и слоёв её внутреннего ядра. При наиболее вероятных предположениях о законах плотности и эллиптичности этих слоёв сжатие Земли оказывается меньшим, чем в случае однородности, и большим, чем если бы сила тяжести была направлена в одну единственную точку. Возрастание тяжести от экватора к полюсам получается большим в первом случае, чем во втором. Но между полным приращением тяжести, взятой за единицу на экваторе, и эллиптичностью Земли существует замечательное соотношение. При любых гипотезах о структуре ядра, покрытого морем, насколько эллиптичность всей Земли меньше той, которая была бы в случае однородности, настолько же общее приращение тяжести больше того, которое было бы в этом же случае, и наоборот. Следовательно, сумма этого приращения и эллиптичности всегда одинакова и равна пятикратной половине отношения центробежной силы к силе тяжести на экваторе, что для Земли составляет 1/115.2.
Если предположить, что слои земного сфероида имеют эллиптическую форму, возрастание его радиусов и силы тяжести, а также уменьшение градусов меридиана от полюсов к экватору пропорциональны квадрату косинуса широты и связаны с эллиптичностью Земли таким образом, что полное возрастание радиусов равно этой эллиптичности; полное уменьшение градусов равно эллиптичности, умноженной на утроенную величину градуса на экваторе; и полное возрастание силы тяжести равно силе тяжести на экваторе, умноженной на избыток 1/115.2 над этой эллиптичностью. Таким образом, можно определить эллиптичность Земли либо путём градусных измерений, либо по наблюдениям маятников. Совокупность этих наблюдений даёт величину возрастания силы тяжести от экватора к полюсам, равную 0.0054. Вычитая эту величину из 1/115.2, получаем сжатие Земли равным 1/304.8. Если предположение об эллиптичности фигуры Земли соответствует природе вещей, это сжатие должно удовлетворять и градусным измерениям. Но оно, напротив, выявляет в них значительные погрешности, что вместе с трудностью приведения всех измерений к одному и тому же эллиптическому меридиану, по-видимому, указывает на то, что фигура Земли сложнее, чем думали раньше. Это не покажется удивительным, если принять во внимание неравномерность глубин морей, возвышение континентов и островов над их уровнем, высоту гор и неравномерность плотностей различных пород на поверхности этой планеты.
Чтобы наиболее полно охватить теорию фигуры Земли и планет, надо было бы определить притяжение сфероидов, мало отличающихся от сферы и образованных, следуя определённым законам, из переменных по форме и плотности слоёв. Кроме того, надо было бы определить фигуру, соответствующую равновесию жидкости, покрывающей её поверхность, так как необходимо представлять себе планеты покрытыми, как и Земля, находящейся в равновесии жидкостью, поскольку иначе их фигура была бы совершенно. произвольной. Даламбер дал для этого хитроумный метод, применимый к большому числу разных случаев. Но этому методу не хватает той простоты, которая столь желательна в таких сложных изысканиях и составляет их главное достоинство. Одно замечательное уравнение в частных производных, относящееся к притяжению сфероидов, привело меня без помощи интегрирования, одним лишь дифференцированием, к общему выражению, которое даёт радиусы сфероидов, притяжение ими любых точек, помещённых внутри них, на их поверхности или вне их, условия равновесия покрывающих их жидкостей, законы силы тяжести и изменения длины градусов меридиана на поверхности этих жидкостей. Все эти величины связаны между собой очень простыми соотношениями, в результате чего появляется возможность проверить предположения, которые можно сделать для представления как наблюдённых изменений силы тяжести, так и градусных измерений меридиана. Бугер, желая представить градусные измерения в Лапландии, во Франции и на экваторе, предположил, что Земля является сфероидом вращения, у которого увеличение градусов меридиана от экватора к полюсам пропорционально четвёртой степени синуса широты. Однако мы находим, что это предположение не может удовлетворить увеличению силы тяжести от экватора до Пелло, увеличению, которое по наблюдениям равно 0.0045 полной силы тяжести, но по этому предположению равнялось бы лишь 0.0027.