Эти затруднения рассматривает С.Ю.Курганов. «Рассмотрим, например, число —3: —/о о о/. Ясно, что «—» — это знак. Но /о о о/, т. е. три кубика — метки — не просто знак, а три дискретные вещи, кубики, отдельности. Понятно, что натуральное число (именно конкретное натуральное, а не абстрактное число вообще) не есть прямой продукт решения задачи измерения — отмеривания величин. Дискретность, квантовость шага, тот факт, что ребенок, измеряя, не непрерывно ползет, а ходит, шагая — очень важна и культурна.» Остановлюсь на этом слове. Пока важно, что идея квантовости, шага, отдельности, единицы психологически предшествует понятию действительного числа как результата измерения и при всем стремлении вывести единицу и вообще натуральное число как частный случай действительного числа методом восхождения от абстрактного к конкретному, конкретное — единица — неявно используется как предшествующая абстрактному. Вот что пишет В.В.Давыдов, характеризуя традиционное формирование понятия числа, подвергаемое им критике: «Путем сравнения многих разнокачественных вещей ребенок выделяет в них нечто сходное, общее — им оказывается отделенность каждого предмета друг от друга, некоторая пространственная или временная их ограниченность. Это единичный предмет, — и в каждом предмете содержится такая внешне воспринимаемая единичность, отдельность. Если ее выделить и отделить от других свойств предмета (а именно это и происходит при постепенном переходе мысли учащихся от «реального мальчика» через «реальный гриб» к любой, но одной палочке), то мы получим единицу. Каждый отдельный предмет суть единица. Группа предметов — множество единиц… Так образуется абстракция количества.» Мне кажется, что речь здесь должна идти вовсе не о формальном обобщении, абстрагировании, как полагает В.В.Давыдов. Ведь «реальный мальчик» до всякого перехода к «реальной палочке» воспринимается как нечто отдельное, одно. «… идея единицы, — пишет С.Ю.Курганов, — не появляется из измерения, а измерением используется, в измерение втягивается, а возникает идея единицы в других ситуациях, ситуациях более теоретических, не завязанных непосредственно на акт предметного действия. Нам представляется, что, скажем, число 1 и 2 возникают из сходных источников. Они возникают, как конкретные понятия (не абстрактные, служащие лишь клеточкой, ступенькой для более сложных, развитых…), как понятия с самого начала теоретические и развитые (и не являющиеся способом осуществления практических действий), замкнутые на себя и внутренне проблемно — вопросительные (что есть единица?). Возникают, по — видимому, не в задачах измерения величин, а из умного всматривания в статичную (но чреватую движением) внутреннюю форму вещей или могущих быть изготовленными орудий типа рычаг, весы, струна.» Итак, оказывается, что способ понимания числа через единицу (и натуральное число вообще) не частность по отношению к пониманию числа как результата измерения. Такой способ понимания числа близок к античному пониманию вещи через ее внутреннюю форму, через ее отдельность, уникальность, с одной стороны; с другой стороны, он не случаен для ребенка 6–7 лет, т. к. тесно связан с установкой на сознание, о которой говорилось выше. для ребенка естественно выделять бытие некоторого предмета как отдельность, как сразу схватываемую конкретную форму, а не как выводимый из действия частный случай (причем в понимании дошкольника и младшего школьника не только качественно выделяются натуральные числа из остальных) «единица числее половины» «— сказала пятилетняя девочка), но и каждое натуральное число имеет свое качество, а не просто является «абстракцией количества». И это детское представление близко к античному способу понимания. Аристотель говорит о качестве «в отношении неподвижного, а именно математических предметов; так, числа имеют определенное качество, например, числа сложные и простираюшиеся не только в одном направлении, а также, подобие которых — плоскость и имеющие объем (сюда принадлежат числа, единожды и дважды помноженные сами на себя); и таково вообще то, что входит в сущность числа помимо количества, ибо сущность каждого числа — это то, что оно единожды, например: сущность шести — не то, что имеется в шести дважды или трижды, а то, что оно единожды, ибо шесть есть единожды шесть.»