Во-первых, Раш рассчитал вероятность того, что случайно выбранный из группы человек ответит на вопрос правильно. Она просто равна доле тех, кто дал верный ответ, в общем числе ответивших на данный вопрос. Этот показатель называется у Раша уровнем трудности задания (item difficulty). Затем Раш рассчитал логарифм отношения вероятностей — натуральный логарифм отношения вероятностей правильного и неправильного ответов. Если трудность задания была 65 %, то это означает, что 35 % респондентов ответили правильно, а 65 % — неправильно. Отношение вероятности ответить правильно к вероятности ответить неправильно — 0,548, а натуральный логарифм 0,548 составляет —0,619. При желании можно записать следующую формулу в программе Excel:
=ln (A1/(1 — A1)),
где А1 — вероятность ответить правильно.
Затем Раш проделал ту же процедуру с вероятностью, что этот человек ответит правильно на любой вопрос. Поскольку данный респондент давал правильные ответы в 82 % случаев, соответствующий логарифм составил ln(0,82/0,18), или 1,52. Наконец, Раш сложил значения двух логарифмов и получил: (-0,619) + 1,52 = 0,9. Чтобы снова преобразовать это в вероятность, можно записать следующую формулу в Excel:
= 1/(1/exp(0,9) + 1).
В результате получится 71 %. Это означает, что есть 71-процентная вероятность того, что данное лицо ответит на этот вопрос верно, учитывая трудность задания и правильность его ответов на другие вопросы. При большом числе вопросов и (или) большом числе испытуемых мы обнаружим следующее: когда вероятность получить правильный ответ (уровень трудности задания) 70 %, около 70 % людей ответят на этот вопрос верно; когда вероятность получить правильный ответ (уровень трудности задания) 80 %, около 80 % людей ответят на данный вопрос верно, и т. д. Таким образом, модели Раша — просто еще один способ калибровки вероятностей.
Мэри Лунц из чикагской компании Measurement Research Associates Inc. применила модели Раша к решению важной задачи в области общественного здравоохранения, порученной ей Американским обществом клинической патологии (American Society of Clinical Pathology). Использовавшийся этим обществом ранее порядок сертификации патологов давал большую погрешность, которую необходимо было уменьшить. Каждый кандидат должен был разобраться в одном или двух случаях, и каждый его ответ оценивался одним или несколькими экспертами. Практически невозможно одному эксперту оценить все задания, как невозможно гарантировать, что все они будут одинаковой сложности. Раньше получение кандидатом сертификата почти целиком зависело от того, какой экзаменатор ему попадется и какой случай придется разбирать на экзамене. Иными словами, снисходительные экзаменаторы могли пропустить некомпетентных кандидатов. Лунц рассчитала стандартные очки Раша для каждого эксперта, экзаменационного задания, а также кандидата для всех уровней квалификации.
В результате появилась возможность предсказать, пройдет ли кандидат экзамен у среднего экзаменатора при случае средней сложности, или у снисходительного эксперта при легком случае, или, наоборот, у строгого экзаменатора при очень сложном случае. И теперь (наверняка не слишком скоро для самих кандидатов) наконец появилась возможность полностью устранить при сертификации отклонения, связанные с характером экзаменатора или сложностью задания.
Интересное направление применения статистики Раша — оценка сложности прочтения того или иного текста. Доктор Джек Стеннер, президент и основатель компании MetaMetrics, Inc., использовал модели Раша для разработки схемы «Lexile» — способа оценки умения читать и писать, а также анализа сложности текста для восприятия. Система «Lexile» позволяет оценивать навыки чтения, письма, выполненные тесты, тексты и способности студентов, впервые сделав возможным сравнение наиболее распространенных языков. Располагая персоналом всего в 56 человек, компания MetaMetrics добилась в этой сфере гораздо больше, чем любая другая государственная или частная организация. Так:
• баллы «Lexile» используются во всех основных тестах на умение читать. Свои показатели «Lexile» знают около 20 млн американских учащихся;
• система «Lexile» использована для классификации по сложности восприятия около 100 тыс. книг и десятков миллионов журнальных статей;
• программы обучения чтению по учебникам некоторых авторов основаны на системе «Lexile»;
• на систему «Lexile» переходят все новые учебные заведения штатов и местные учебные заведения.
Показатель 100 баллов по системе «Lexile» означает текст первого уровня сложности, а 1700 — это уровень сложности текста решений Верховного суда, научных журналов и т. п. Компания MetaMetrics считает, что читатель, набравший 600 баллов, сумеет на 75 % понять содержание текста, уровень сложности которого составляет также 600 баллов.
Устранение непоследовательности людских суждений: модель линзы