В 1950-х годах психолог по имени Эгон Брунсвик захотел статистически измерить принимаемые экспертами решения[44]
. Большинство его коллег интересовались тем скрытым процессом принятия решений, через который обычно проходят такие эксперты. А Брунсвику хотелось описать те решения, которые они принимали в реальности. О себе и других специалистах по психологии принятия решений он говорил: «Мы должны быть не столько геологами, сколько картографами». Иными словами, свою задачу он видел в простом описании того, что можно наблюдать, а не в анализе внутренних процессов. В связи с этим Брунсвик начал свои эксперименты, в которых экспертам предлагалось принять какое-то решение (скажем, о приеме выпускника в аспирантуру или о статусе опухоли) на основании определенной предоставленной информации. Затем Брунсвик подобрал наиболее подходящую регрессионную модель для большого числа собранных экспертных оценок (сейчас это можно легко проделать с помощью инструмента «Regression» в программе Excel, как показано в главе 9). В результате он вывел нечто вроде формулы с набором неявных весов, осознанно или неосознанно использованных экспертами при вынесении оценок.Удивительно, что он также обнаружил, что эта «формула», хотя в ней использовались вовсе не объективные данные прошлых периодов, а экспертные суждения, позволяет получить более точные оценки, чем сделанные специалистами. Например, эта формула, получившая известность под названием «модель линзы», лучше эксперта определяет, кто будет хорошо учиться в аспирантуре или какая опухоль является злокачественной.
Модель линзы применяется в самых разных целях, например для составления медицинских прогнозов, идентификации самолетов операторами корабельных радаров и расчета вероятности краха компании по ее финансовым показателям. В каждом случае результаты, полученные с помощью модели, ничем не хуже, а в большинстве случаев и значительно лучше, чем оценки экспертов.
Это происходит потому, что модель линзы устраняет непоследовательность в суждениях. Обычно экспертные оценки различаются даже в одинаковых ситуациях. Однако линейная модель экспертной оценки позволяет получать не противоречащие друг другу величины.
Более того, поскольку модель линзы — математическое выражение, элементами которого являются известные исходные данные, можно компьютеризировать и обрабатывать такие объемы информации, которые люди не смогли бы проанализировать по очереди.
Сама семиэтапная процедура расчетов довольно проста. Я слегка изменил ее, чтобы учесть и другие методы (например, калибровку вероятностей), ставшие известными после того, как Брунсвик разработал свой способ (см. рис. 12.3).
1. Выберите экспертов, которые будут участвовать в процессе.
2. Если им придется оценивать вероятность или интервал значений, то калибруйте их.
3. Попросите экспертов составить список (не более чем из 10 пунктов) факторов, требующих учета при вынесении оценки (например, «продолжительность реализации проекта разработки программного обеспечения повышает риск неудачи» или «уровень доходов лица, обращающегося за ссудой, влияет на вероятность погашения им взятого кредита»).
4. Разработайте ряд сценариев с разными сочетаниями значений каждого из выявленных факторов воздействия. За основу можно взять и реальные, и чисто гипотетические примеры. Составьте по 30–50 сценариев для каждого эксперта.
5. Попросите экспертов дать оценку каждого сценария.
6. Проведите регрессионный анализ, следуя указаниям, изложенным в главе 9. Независимые переменные «Х» — предоставленные экспертам исходные данные. Зависимая переменная «Y» — оценка, которую должен был дать эксперт.
7. Программа Excel создаст таблицу результатов, в которой вы найдете коэффициент для всех столбцов данных из ваших сценариев. Найдите коэффициент, соответствующий каждой переменной, умножьте ее на этот коэффициент, а затем суммируйте все полученные таким образом произведения. Это и есть величина, которую вы пытаетесь измерить.
Результатом процедуры, описанной выше, является таблица с весами для всех переменных, входящих в модель. Поскольку данная модель внутренне непротиворечива, мы знаем, что уменьшили ошибку, по крайней мере частично.
Быстро выяснить, насколько модель линзы снижает неопределенность, можно, оценив непоследовательность экспертных суждений. Для этого нужно предложить экспертам дублирующие друг друга сценарии, что должно остаться для них в тайне. Иными словами, седьмой и двадцать девятый сценарии в списке могут быть одинаковыми. Изучив два десятка сценариев, люди забудут, что уже знакомы с этой ситуацией, и вполне могут дать отличающийся ответ. Вдумчивые эксперты обычно последовательны в своих суждениях о сценариях. Тем не менее именно непоследовательностью объясняется 10–20 % ошибок большинства экспертных оценок, их полностью устраняет метод линзы.