Второе отличие метода анализа иерархий от других способов расчета условных взвешенных коэффициентов — определение «коэффициента согласованности». Он показывает, насколько ответы не противоречат друг другу. Например, если вы предпочитаете а) возможность получить стратегическое преимущество низкому риску разработки новой продукции и б) низкий риск, связанный с разработкой новой продукции, возможности использовать существующие каналы сбыта, то тогда вы не должны отдавать приоритет возможности использовать существующие каналы сбыта возможности получить стратегическое преимущество. Если таких несоответствий много, то коэффициент согласованности низок. Если ни один ответ не противоречит другому, то коэффициент согласованности равняется 1.
Расчет коэффициента согласованности базируется на одном методе из матричной алгебры — нахождении собственных значений, — применяемом для решения целого ряда математических задач. Поэтому метод АНР нередко называют «теоретически обоснованным», или «математически доказанным». Если бы критерием теоретической обоснованности было просто использование на каком-то этапе математического инструмента (пусть и такого мощного, как нахождение собственных значений матрицы), то тогда доказать правоту новой теории или эффективность нового метода было бы гораздо легче, чем на самом деле. Кто-нибудь нашел бы способ использовать нахождение собственных значений матрицы в астрологии или дифференциальные уравнения в хиромантии. Но ни в том, ни в другом случае ценность самого метода не повысилась бы только потому, что был применен математический прием, доказавший свою эффективность в других условиях.
На самом деле АНР — просто еще один метод расчета взвешенных коэффициентов, особенностью которого является возможность снижения уровня информационного шума за счет выявления противоречащих друг другу ответов. Однако это вряд ли делает его результаты «доказанными», как часто утверждается. Проблема в том, что сравнение таких критериев, как стратегическая согласованность и риск, связанный с разработкой новой продукции, обычно не имеет смысла. Если бы я спросил, что вы предпочитаете — новую машину или деньги, то вы, прежде всего, спросили бы меня, о какой машине и о каких деньгах я говорю. Если бы речь шла о малогабаритном автомобиле среднего класса с пятнадцатилетней историей и миллионе долларов, то вы, наверное, дали бы один ответ, а если бы о новом «роллс-ройсе» и ста долларах, то другой. Тем не менее, по моим наблюдениям, когда группа людей применяет АНР, никто не спрашивает, о какой степени риска разработки новой продукции и о каких объемах затрат идет речь. Как ни странно, они просто дают ответ, как если бы сравнение было очевидно. Такой подход привносит опасность, что одни люди просто представляют себе совсем иные связи между затратами и риском, чем другие, а значит, уровень шума только повышается.
Последний, особенно странный недостаток анализа иерархий — возможность обратного порядка предпочтений[50]
. Допустим, вы про-ранжировали с помощью АНР варианты А, B и C так, что самым предпочтительным оказался вариант А. Предположим, что вы откажетесь от варианта С; изменится ли в результате положение вариантов А и В в списке так, что лучшим станет В, а худшим — А? Нелепо, не правда ли? Как ни странно, применение метода анализа иерархий может привести именно к этому.Существует только один ограничивающий критерий, позволяющий с уверенностью сказать, являются ли методы анализа «затрат/выгод» или расчета взвешенных коэффициентов способами измерения: результатом должно стать повышение предыдущего уровня знания. Если использованный метод только увеличивает прежнюю ошибку, то это не измерение. Если его считают формализованным и систематизированным, но без научных доказательств уменьшения ошибки и принятия более удачных решений, это не измерение. На проведение псевдоизмерений организации нередко тратят больше времени и сил, чем потребовалось бы на применение способов, гарантированно снижающих неопределенность. Зачем же тогда, спрашивается, даже думать об использовании методов, которые фактически не уменьшают неопределенность?
Сравнение методов
В конечном счете, человеческое суждение — совсем не плохой инструмент измерения. Если вы регулярно принимаете большое число аналогичных решений, то модели Раша и линзы, несомненно, помогут вам снизить неопределенность, устранив отдельные типы ошибок, присущие экспертам. Даже простой z-показатель Доуза выглядит, похоже, как определенный шаг вперед по сравнению с мнением эксперта.