Примерно в это время я впервые заметил, что в управлении информационными технологиями крайне редко или вообще не используются количественные методы, широко применяемые в других областях. То, что количественно оценивалось в других сферах деятельности, в ИТ нередко считалось не поддающимся измерению. Именно тогда я решил, что кто-то должен найти способ внедрить в эту область уже апробированные количественные методы.
К тому времени я уже работал в компании DHS & Associates, базировавшейся в Роузмонте, штат Иллинойс. Позднее эта фирма стала называться RiverPoint, и именно в ней сейчас работает Рей Эпич. Руководство DHS & Associates также видело необходимость использования в ИТ более количественно обоснованных решений, а культура этой компании предоставляла консультантам большую свободу в разработке новых идей.
В том же году я приступил к созданию метода, который назвал прикладной информационной экономикой (AIE). Я разрабатывал ее для области информационных технологий, но оказалось, что она позволяет решать задачи по измерению, возникающие в любой сфере.
Сводим все воедино
Основные составляющие прикладной информационной экономики — методы оценки неопределенности, риска и стоимости информации, обсуждавшиеся в части II. Словом, метод AIE отвечает на четыре вопроса:
1) как смоделировать текущее состояние неопределенности;
2) как рассчитать, что еще необходимо измерить;
3) как измерить это экономически оправданным способом;
4) как принять решение?
Чтобы глубже вникнуть в процессы прикладной информационной экономики, обратимся к рисунку 14.1. Вы видите, что AIE действительно не более чем обобщение всего, о чем мы говорили до сих пор.
Подход прикладной информационной экономики
С 1995 г. я измеряю с помощью прикладной информационной экономики всевозможные объекты, казавшиеся поначалу трудно или даже вовсе не поддающимися количественной оценке. Довольно длинное название этого подхода было выбрано потому, что я хотел придать ему описательный характер. Постоянно рассчитывая стоимость информации о каждой неизвестной переменной, подлежащей учету при принятии решения, и пересчитывая ее после каждого нового измерения, мы получаем возможность определить, что именно заслуживает измерения.
На начальном этапе постановки задачи метод AIE придает большое значение количественной оценке неопределенности и риска как необходимому условию расчета стоимости информации. А когда выясняется, что проведение измерений экономически оправданно, AIE предполагает использование только методов, гарантированно уменьшающих ошибку. Сложность заключалась в том, чтобы собрать все это в один внутренне непротиворечивый метод. После нескольких первых проектов стало очевидно, что процесс должен состоять из следующих этапов:
• Предварительные исследования. Чтобы понять характер проблемы, аналитик встречается с заинтересованными лицами и изучает результаты вторичных исследований и отчеты за прошлые периоды.
• Подбор экспертов. Обычно необходимо, чтобы свои оценки дали четыре-пять специалистов, но мне доводилось привлекать и по 20 экспертов, хотя я не рекомендую этого делать.
• Планирование заседаний рабочей группы. Вместе с отобранными экспертами составляется расписание четырех — шести заседаний рабочей группы продолжительностью в половину рабочего дня.
• Определение проблемы. На первом заседании рабочей группы эксперты определяют, какую конкретную задачу они на самом деле должны проанализировать. Например, что на самом деле они должны сделать: решить, стоит ли продолжать данный инвестиционный проект, или проблема в том, как его скорректировать? Если задача — одобрить или отвергнуть инвестиционный проект или другую программу, то тогда необходимо встретиться с лицами, принимающими решения, чтобы определить инвестиционную границу для этой организации.
• Детализация модели принятия решения. Ко дню проведения второго заседания рабочей группы составляется электронная таблица в программе Excel, учитывающая все факторы, влияющие на анализируемое решение, и их совокупное воздействие. Если принимается решение одобрить или отклонить какой-нибудь крупный проект, следует перечислить все затраты и выгоды, ввести их в общий денежный поток и рассчитать ROI (как это делается при обосновании любого проекта).
• Первоначальные калиброванные оценки. На оставшихся заседаниях рабочей группы мы калибруем экспертов и подставляем предложенные ими значения переменных в модель принятия решения. Эти значения не фиксированы (если только нам не известны точные числа), а являются калиброванными экспертными оценками. Все они представляют собой 90-процентные доверительные интервалы или другие распределения вероятностей.