• Анализ стоимости информации (value of information analysis, VIA). На этой стадии мы анализируем стоимость информации о каждой переменной, входящей в модель. В результате мы узнаем не только значение каждой неизвестной, но и его порог. Макрос, написанный мной в программе Excel, делает это быстро и точно, но и методы, обсуждавшиеся ранее в этой книге, тоже дают хорошие оценки.
• Предварительный выбор метода измерения. В ходе VIA выясняется, что мы обладаем достаточной информацией о большинстве переменных и что их дополнительной оценки, кроме калиброванной, не потребуется. Обычно высокой оказывается стоимость информации лишь о паре переменных (и нередко их выявление приносит сюрпризы). На основании полученных данных осуществляется выбор таких методов измерения, которые обязаны снизить неопределенность, не превышая ожидаемой стоимости полной информации. В ходе VIA также определяется порог измерения, в случае достижения которого приходится принимать иное решение. Наш метод измерения ориентирован на уменьшение неопределенности относительно этого порога.
• Применяемые методы измерения. Разложение на составляющие, случайная выборка, субъективно-байесовский способ, проведение контролируемых экспериментов, метод линзы (и т. д.) или любое их сочетание — все это может использоваться для снижения неопределенности переменных, определенных на предыдущем этапе.
• Усовершенствованные модели принятия решения. Результаты этих измерений используются для уточнения значений переменных в нашей модели. В модель вводятся величины, появившиеся в результате разложения первоначальной переменной на составляющие (например, неизвестный элемент затрат может быть разложен на более мелкие компоненты с присущими им 90-процентными доверительными интервалами).
• Конечная стоимость анализа затрат на информацию. Анализ и измерения (предыдущие четыре шага) часто проходят несколько повторений. До тех пор пока VIA показывает, что стоимость информации превышает затраты на проведение измерений, их можно продолжать. Однако обычно уже после одной-двух итераций, согласно VIA, проведение дальнейших измерений экономически нецелесообразно.
• Полный анализ соотношения «риск/доходность». Результатом моделирования методом Монте-Карло являются вероятности возможных исходов. Если необходимо принять решение о судьбе крупных инвестиций, проекта, серьезных обязательств или какой-либо другой программы (как это обычно и бывает), то следует сравнить риск и доходность с инвестиционной границей данной организации.
• Выбор способов отслеживания показателей. Нередко бывают такие переменные, рассчитывать которые вначале кажется нецелесообразным, поскольку ценность информации о них становится очевидной лишь впоследствии. Зачастую это величины, характеризующие ход выполнения проекта и внешние условия функционирования компании, например состояние всей экономики. Такие переменные необходимо отслеживать постоянно, так как их изменение может потребовать принятия корректирующих мер. В связи с этим следует ввести процедуры постоянного расчета подобных показателей.
• Оптимизация решения. Принимаемое на практике решение редко оказывается итогом простого процесса одобрения по типу «да — нет». А когда это так, существуют многочисленные способы улучшить уже принятое решение. Теперь, с детально разработанной моделью «риск/доходность», можно разработать стратегии уменьшения риска или попытаться повысить доходность инвестиций, проведя анализ по методу «что, если».
• Заключительный отчет и презентация. Заключительный отчет должен содержать описание модели принятия решения, результатов анализа стоимости информации, использованных методов измерения, положения на инвестиционной границе, а также всех показателей, требующих постоянного отслеживания, или методов оптимизации принятого решения.
Описанный процесс выглядит довольно сложным, но на самом деле это лишь резюме всего, о чем мы говорили в этой книге до сих пор. Рассмотрим теперь несколько примеров практического применения AIE для измерения в тех областях, которые многим участникам моего исследования казались совершенно неизмеряемыми.
Пример из практики: стоимость системы, следящей за качеством питьевой воды
В Агентстве по защите окружающей среды (ЕРА) функционирует информационная служба по безопасности питьевой воды (Safe Drinking Waters Information System, SDWIS) — главная система наблюдения за качеством питьевой воды в Соединенных Штатах, обеспечивающая быстрое реагирование на появление любых угроз здоровью населения. Когда отвечавшему за программу SDWIS руководителю филиала Джеффу Брайану потребовалось больше средств, перед ним встала задача подготовить убедительное обоснование проекта. Однако его беспокоило то, что все преимущества SDWIS были, в конечном счете, связаны с областью здоровья населения и он не знал, как их оценить экономически.