Раньше ученые считали, что большинство этих шагов жестко запрограммированы в мозге в виде структуры с фиксированными связями. Но, как мы теперь знаем из многочисленных исследований, эта система оказалась гораздо более пластичной. В следующих разделах мы еще раз пройдемся по зрительной системе от сетчатки до высших корковых областей, но на этот раз сосредоточим внимание на ее сетеподобном характере, а также на значительной пластичности и обучаемости. Нас также будут интересовать аспекты, которые делают естественное человеческое зрение похожим на ведущую форму компьютерного зрения.
Компьютерное зрение обычно начинается с этапа предварительной обработки или нормализации изображения, в ходе которого беспорядочное естественное изображение преобразуется в более простое и пригодное для дальнейшей обработки. То же самое, по сути, делает и сетчатка: она улавливает свет и преобразует вывод своих светочувствительных клеток – палочек и колбочек – в набор сигналов, с которыми может работать остальная часть зрительной системы. Первым делом сетчатка нормализует вывод с фоторецепторов, выравнивая огромные вариации интенсивности света, которые характерны для земной реальности. Это гораздо важнее, чем мы думаем. Значения сигналов палочек и колбочек разнились бы в сотню миллиардов раз темной безлунной ночью и ярким солнечным днем, если бы их вывод не нормализовался сетчаткой. Ни отдельные нейроны, ни весь мозг, ни даже компьютеры не способны справиться с таким гигантским диапазоном входных сигналов.
Сетчатка сжимает этот диапазон, так что при любой освещенности ее выходные сигналы об интенсивности света варьируются всего примерно в десять раз. Что еще удивительнее, она центрирует этот узкий диапазон относительно средней яркости окружающего освещения на данный момент[31]
. Мы осознаем этот процесс настройки, только когда внезапно выходим из темноты на свет или наоборот: мы временно ослеплены ярким светом или ничего не видим в темноте, пока сетчатка не адаптируется к новому уровню яркости. Второй вид предварительной обработки изображения, который выполняет сетчатка, – это начальное выделение краев (при помощи латерального торможения) и обнаружение движения, о чем мы говорили в главе 4.В чем смысл этого начального этапа обработки изображений? В компьютерах практически любой алгоритм машинного зрения начинается с набора операций, цель которых – уменьшить вычислительную нагрузку на последующие этапы обработки, будь то анализ на основе правил или с использованием нейронных сетей. Например, природа на протяжении миллионов лет усвоила ключевой урок: важно то, что движется, – и воплотила это знание в сетчатке в виде чувствительных к движению ганглионарных клеток.
В позднем пренатальном периоде аксоны ганглионарных клеток сетчатки уже достигают ЛКТ. Там они соединяются с нейронами, но делают это неточно: окончания ганглионарных клеток разветвляются на множество веточек, которые охватывают довольно обширные области и соединяются со многими нейронами ЛКТ. Если бы такая ситуация сохранялась и в зрелом возрасте, наше зрение было бы размазанным из-за перекрывающих друг друга проводящих путей. Но благодаря механизму синаптического усиления аксоны сетчатки все лучше достигают своей цели.
Вкратце это работает следующим образом: генетически запрограммированные молекулярные сигналы направляют аксоны сетчатки к ЛКТ, где те формируют грубую топографическую карту. Аксоны, которые одновременно возбуждают свои постсинаптические нейроны, – то есть аксоны, идущие из одного глаза, – усиливают синаптические связи со своими нейронами-мишенями в ЛКТ. Постепенно разветвленные аксоны уточняют свои мишени, так что одна группа нейронов ЛКТ становится чувствительной к входящим сигналам от правого глаза, другая – от левого. Страйкер и Шатц убедительно доказали это посредством обстоятельно проведенных и воспроизводимых экспериментов, что стало очередным важным шагом в исследовании зрительной системы.
Начиная с этого места мы можем рассматривать этапы зрительного анализатора как слои нейронной сети. Давайте возьмем процесс распознавания объектов и посмотрим, как каждый из его этапов мог быть создан мозгом с использованием того, что сегодня мы называем правилами машинного обучения.
Нейроны ЛКТ проецируют аксоны в первичную зрительную кору, где появляются нейроны, чувствительные к ориентированным краям. Но как нейроны V1 создают простые ориентированные рецептивные поля из неориентированных полей нейронов ЛКТ?