Читаем Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews полностью

2. В столбце СТАНДАРТНАЯ ОШИБКА сгенерированы стандартные ошибки свободного члена и коэффициента регрессии, значения которых даны во втором столбце табл. 2.4. При этом стандартная ошибка свободного члена уравнения регрессии находится по следующей формуле:

где MSост = Dост — остаточная дисперсия, приходящаяся на одну степень свободы.

Для нашего случая стандартная ошибка свободного члена уравнения регрессии равна

В свою очередь стандартная ошибка коэффициента регрессии оценивается по следующей формуле:

Для нашего случая стандартная ошибка коэффициента регрессии имеет следующее значение:

3. В столбце t-СТАТИСТИКА даны расчетные значения /-критерия. При этом для свободного члена /-статистика вычисляется по формуле

где а — свободный член уравнения.

В нашем случае t-статистика находится следующим образом:

Для коэффициента регрессии t-статистика рассчитывается по формуле

где b — коэффициент регрессии.

Тогда Z-статистика находится следующим образом:

4. В столбце Р-ЗНАЧЕНИЕ сгенерированы уровни значимости, соответствующие значениям t-статистики.

В Excel Р-значение находится с помощью следующей функции:

СТЬЮДРАСП (X = tст; df= п- к — 1; хвосты = 2),

где в опции X дается t-статистика, для которой нужно вычислить двустороннее распределение;

в опции df — число степеней свободы; в опции хвосты — цифра 2 для двустороннего распределения.

Для свободного члена уравнения эта функция приобретает следующий вид:

СТЬЮДРАСП (2,284573; 215-1-1= 213; 2) = 0,023323.

Следовательно, Р-значение свободного члена уравнения показывает, что этот коэффициент значим лишь при 5 %-ном уровне значимости, но не при 1 %-ном уровне значимости.

Для коэффициента регрессии P-значение в Excel находится следующим образом[4]:

СТЬЮДРАСП (23,12267; 215 — 1–1= 213; 2) = 5,4Е — 60 = 0,0.

Следовательно, P-значение коэффициента регрессии показывает, что этот коэффициент значим не только при 5 %-ном уровне значимости, но и при 1 %-ном уровне значимости.

5. Столбцы НИЖНИЕ 95 % и ВЕРХНИЕ 95 % показывают соответственно нижние и верхние интервалы значений коэффициентов при 95 %-ном уровне значимости. Для расчета доверительных интервалов сначала устанавливается критическое значение /-критерия, которое в Excel находится с помощью функции

СТЬЮДРАСПОБР ( = 0,05; df = n — k — 1);

где в опции  — величина риска, при котором коэффициент регрессии (или свободный член) может оказаться за рамками установленных доверительных интервалов;

в опции df — число степеней свободы.

Таким образом, для 95 %-ного уровня надежности t-критерий = СТЬЮДРАСПОБР ( = 0,05; df= 215 — 1–1) = 1,9712.

Далее для свободного члена уравнения находим:

1. Значение столбца НИЖНИЕ 95 % = КОЭФФИЦИЕНТ — СТАНДАРТНАЯ ОШИБКА x t-критерий = 1,995805 — (0,873601 x 1,9712) = 0,273794.

2. Значение столбца ВЕРХНИЕ 95 % = КОЭФФИЦИЕНТ + СТАНДАРТНАЯ ОШИБКА x t-критерий = 1,995805 + (0,873601 x 1,9712) = = 3,717815.

Для коэффициента регрессии TIME находим:

1. Значение столбца НИЖНИЕ 95 % = КОЭФФИЦИЕНТ — СТАНДАРТНАЯ ОШИБКА x t-критерий = 0,162166 — (0,007013 x 1,9712) = 0,148342.

2. Значение столбца ВЕРХНИЕ 95 % = КОЭФФИЦИЕНТ + СТАНДАРТНАЯ ОШИБКА x t-критерий = 0,162166 + (0,007013 x 1,9712) = 0,175991.

6. Столбцы НИЖНИЕ 99 % и ВЕРХНИЕ 99 % показывают соответственно нижние и верхние интервалы значений коэффициентов при 99 %-ном уровне значимости. При этом значения столбца НИЖНИЕ 99 % и ВЕРХНИЕ 99 % находятся аналогичным образом, как и значения столбцов НИЖНИЕ 95 % и ВЕРХНИЕ 95 %.

Единственное отличие — это расчет t-критерия для 99 %-ного уровня надежности. При этом t-критерий = СТЬЮДРАСПОБР ( = 0,01; df= 215 — 1–1) = 3,3368. Найденный t-критерий используют при нахождении 99 % доверительных интервалов для свободного члена и коэффициента регрессии. Правда, со свободным членом уравнения у нас возникает довольно серьезная проблема. Дело в том, что при 99 %-ном уровне надежности у свободного члена уравнения при переходе от столбца НИЖНИЕ 99 % к столбцу ВЕРХНИЕ 99 % происходит смена знака от минуса к плюсу. Вполне очевидно, что в практических расчетах столь неоднозначно изменяющийся свободный член уравнения (он может быть как положительным, так и отрицательным, а также равным нулю) невозможно использовать. Поэтому для 99 %-ного уровня надежности свободный член уравнения считается статистически незначимым, в то время как для 95 %-ного уровня надежности его можно считать статистически значимым, поскольку в последнем случае при переходе от столбца НИЖНИЕ 95 % к столбцу ВЕРХНИЕ 95 % не происходит смена знака от минуса к плюсу.

Суммируя сказанное, приведем краткий алгоритм принятия решения о статистической значимости уравнения регрессии на основе ВЫВОДА ИТОГОВ в Excel.

Алгоритм действий № 4Оценка статистической значимости уравнения регрессии и его коэффициентовШаг 1. Принятие решения о значимости уравнения регрессии

1.1. Чем ближе R-квадрат к единице, тем лучше. Это дает важный критерий для выбора одного из нескольких уравнений регрессии.

Перейти на страницу:

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Богатый пенсионер
Богатый пенсионер

Есть ли жизнь после пенсии? Безусловно, но ее качество зависит только от вас. Каждому, независимо от возраста, важно понимать суть пенсионной реформы. С этой книгой вы сможете:• изучить основы пенсионной реформы и определить, как увеличить страховую и накопительную части вашей пенсии;• создать себе прибавку к государственной пенсии;• выбрать ЛУЧШЕЕ из всего многообразия инвестиционных инструментов, доступных частному инвестору.Как это сделать? В книге рассмотрены все вопросы, касающиеся пенсионного обеспечения. В первой части вы познакомитесь с содержанием пенсионной реформы, узнаете структуру государственной пенсии, а также способы влияния на ее размер. Во второй части рассмотрены инвестиционные инструменты для получения негосударственной пенсии: накопительные страховые программы, негосударственные пенсионные фонды, паевые инвестиционные фонды, общие фонды банковского управления, игра на бирже, недвижимость, драгметаллы и др. Третья часть книги посвящена самому главному – правилам выбора подходящих инвестиционных инструментов для будущих пенсионеров. Жизнь на пенсии может быть богатой, а сделать ее такой поможет эта книга.

Наталья Юрьевна Смирнова , Сергей Владимирович Макаров

Финансы / Личные финансы / Финансы и бизнес