Читаем Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews полностью

1.2. Значимость F при 95 %-ном уровне надежности должна быть меньше 0,05; при 99 %-ном должна быть меньше 0,01.

Шаг 2. Принятие решения о значимости коэффициентов уравнения регрессии

2.1. P-значение должно быть меньше 0,05 при 95 %-ном уровне надежности; при 99 %-ном P-значение должно быть меньше 0,01.

2.2. Коэффициенты регрессии и свободный член уравнения при переходе от столбцов НИЖНИЕ и ВЕРХНИЕ (при заданном уровне надежности) не должны менять свой знак. Если смена знака происходит, то коэффициенты регрессии и свободный член уравнения признаются статистически незначимыми.

Исходя из этого краткого алгоритма мы отметили жирным шрифтом в ВЫВОДЕ ИТОГОВ (табл. 2.5) именно те пункты, на которые следует обратить внимание. При этом те пункты, которые не являются статистически значимыми при определенном уровне надежности, мы не только выделили жирным шрифтом, но еще и подчеркнули.

Таким образом, взяв за основу данные из табл. 2.5 и действуя по алгоритму № 4, мы дадим ответы на все его четыре пункта.

1.1. Поскольку коэффициент детерминации R2 для этого уравнения регрессии оказался равен 0,71511, то отсюда можно сделать вывод, что это уравнение в 71,51 % случаях в состоянии объяснить ежемесячные колебания курса доллара.

1.2. Значимость F равна 5,4Е -60 или нулю, а следовательно, уравнение регрессии статистически значимо как при 95 %-ном уровне надежности, так и при 99 %-ном уровне надежности.

2.1. Р-значение для свободного члена уравнения равно 0,023323, а следовательно, этот коэффициент статистически значим лишь при 95 %-ном уровне надежности, но незначим при 99 %-ном уровне надежности, поскольку он больше 0,01. Р-значение для коэффициента регрессии равно нулю, а следовательно, этот коэффициент статистически значим как при 95 %-ном уровне надежности, так и при 99 %-ном уровне надежности.

2.2. Свободный член (константа) уравнения при переходе от столбца НИЖНИЕ 99,0 % к столбцу ВЕРХНИЕ 99,0 % меняет знак с минуса на плюс, а потому статистически незначим при 99 %-ном уровне надежности. При 95 %-ном уровне надежности смены знаков не происходит, а потому свободный член уравнения при этом уровне надежности статистически значим. Коэффициент регрессии статистически значим как при 95 %, так и при 99 %-ном уровне надежности, поскольку и в том, и в другом случае смены знака у этого коэффициента не происходит. Следовательно, на основании табл. 2.5 можно сделать вывод, что в целом уравнение регрессии и все его коэффициенты статистически значимы при 95 %-ном уровне надежности.

Как мы уже говорили ранее, уравнение регрессии в отличие от обычных уравнений, оценивающих функциональную, т. е. жестко детерминированную связь между переменными, дает прогноз зависимой переменной с учетом воздействия случайного фактора, поэтому фактические значения результативного признака практически всегда отличаются от его расчетных (теоретических) значений. При этом случайная компонента (остаток) находится следующим образом.

Сначала находится прогнозируемый курс доллара, например, на апрель 2010 г. С учетом того, что порядковый номер апреля 2010 г. равен 215 (июнь 1992 г. = 1), на этот месяц может быть предсказан следующий курс доллара:

Yрасч = 0,1622 x 215 + 1,9958 = 36,8616;

Е= Yфакт- Yрасч = -7,573.

Следовательно, прогноз, сделанный по уравнению регрессии, в апреле 2010 г. оказался выше фактического курса доллара на 7 руб. 57,3 коп. Вполне очевидно, что это слишком большая величина отклонения, чтобы исследуемое уравнение регрессии можно было бы использовать для прогноза валютного курса. В свою очередь чем ближе теоретические значения подходят к фактическим данным, тем лучше качество прогностической модели. Поскольку разница между фактическим и предсказываемым значениями курса доллара (Yфакт- Yрасч) может быть величиной как положительной, так и отрицательной, то ошибку аппроксимации (подгонки модели к фактическим данным) следует определять как в абсолютных цифрах по модулю, так и в процентах по модулю.

При этом среднюю абсолютную ошибку по модулю находят по следующей формуле:

Для нашего уравнения регрессии средняя абсолютная ошибка по формуле (2.20) будет равна

Иначе говоря, прогноз по этой статистической модели в среднем по каждому наблюдению отклонялся от фактического значения курса доллара на 5 руб. 62,3 коп. по модулю.

Среднюю относительную ошибку по модулю в процентах вычисляют по следующей формуле:

При этом средняя относительная ошибка по модулю в процентах имеет следующее значение:

Следовательно, прогноз по этой статистической модели в среднем по каждому наблюдению отклонялся от фактического значения курса доллара на 38,98 %. В то время как о хорошем качестве уравнения регрессии можно говорить лишь в том случае, если средняя относительная ошибка по модулю составляет не более 5–7 %[5].

Перейти на страницу:

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Богатый пенсионер
Богатый пенсионер

Есть ли жизнь после пенсии? Безусловно, но ее качество зависит только от вас. Каждому, независимо от возраста, важно понимать суть пенсионной реформы. С этой книгой вы сможете:• изучить основы пенсионной реформы и определить, как увеличить страховую и накопительную части вашей пенсии;• создать себе прибавку к государственной пенсии;• выбрать ЛУЧШЕЕ из всего многообразия инвестиционных инструментов, доступных частному инвестору.Как это сделать? В книге рассмотрены все вопросы, касающиеся пенсионного обеспечения. В первой части вы познакомитесь с содержанием пенсионной реформы, узнаете структуру государственной пенсии, а также способы влияния на ее размер. Во второй части рассмотрены инвестиционные инструменты для получения негосударственной пенсии: накопительные страховые программы, негосударственные пенсионные фонды, паевые инвестиционные фонды, общие фонды банковского управления, игра на бирже, недвижимость, драгметаллы и др. Третья часть книги посвящена самому главному – правилам выбора подходящих инвестиционных инструментов для будущих пенсионеров. Жизнь на пенсии может быть богатой, а сделать ее такой поможет эта книга.

Наталья Юрьевна Смирнова , Сергей Владимирович Макаров

Финансы / Личные финансы / Финансы и бизнес