Читаем Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews полностью

5. В каком случае делается вывод о статистической значимости коэффициентов уравнения регрессии? При каком Р-значении коэффициенты уравнения регрессии являются статистически значимыми с 95 %-ным и 99 %-ным уровнем надежности?

6. Перечислите форматы трендов, используемых в Excel при решении уравнений регрессии графическим способом. Чем эти форматы трендов отличаются друг от друга?

<p>Глава 3</p><p>Уравнения авторегрессии и авторегрессии со скользящим средним</p><p>3.1. Специфика уравнений авторегрессии (AR)</p>

Во главе 2 мы убедились, что использование фактора времени для прогноза курса доллара не дает достаточно точного результата, поэтому необходимо найти более подходящую независимую переменную (или переменные). Как известно, согласно теории эффективного рынка, наиболее полную информацию для прогноза будущей стоимости какого-либо финансового актива в момент времени t можно извлечь из его цены в момент времени t-1. Причем точность прогноза уменьшается по мере того, как прогноз делается в моменты времени t-2, t-3 и т. д. Исходя из этого вполне очевидного постулата можно прийти к выводу, что наиболее полную информацию о курсе доллара на момент времени t содержит его курс на момент времени t-1. Следовательно, наиболее точный прогноз курса американской валюты можно рассчитать на основе уравнения регрессии, включив в него в качестве независимой переменной курс доллара с лагом t-1. Такого рода уравнения регрессии, в которых значения результативного признака прогнозируются на основе его предыдущих значений, в статистической литературе называют уравнениями авторегрессии.

Правда, в отличие от прогностической модели, в которой в качестве независимой переменной используется фактор времени, а потому горизонт для прогноза практически безграничен, прогноз по авторегрессионной модели имеет небольшой временной горизонт для прогноза, равный длине лага. В частности, модель авторегрессии с лагом в один месяц способна давать прогноз с упреждением в один месяц.

Помимо относительно небольшого временного горизонта для прогноза в процессе построения моделей авторегрессии возникает еще одна серьезная проблема. Дело в том, что наличие лаговых значений зависимой переменной в правой части уравнения приводит к нарушению одной из важнейших предпосылок метода наименьших квадратов (МНК) — об отсутствии связи между зависимой (результативной) и независимой (факторной) переменными. Если перейти к языку формул, то теоретически эта проблема может быть изложена следующим образом:

Yt= c + bYt-1 + e, (3.1)

где с — свободный член (константа) уравнения;

Yt зависимая (результативная) переменная;

Yt-1 — независимая (факторная) переменная с лагом в один месяц;

b — соответствующий коэффициент при Yt-1,

еt отклонение прогноза от фактического курса доллара (остаток) в текущем месяце t.

Таким образом, из формулы (3.1) следует, что в уравнении авторегрессии может иметь место, во-первых, зависимость между et и еt-1, т. е. может быть нарушена предпосылка МНК об отсутствии автокорреляция в остатках; во-вторых, может появиться зависимость между факторной переменной Y, и остатками et, т. е. будет нарушена предпосылка МНК о гомоскедастичности[9] остатков.

Наличие автокорреляции в остатках означает определенную связь (корреляцию) между остатками текущих и предыдущих наблюдений. При наличии такой зависимости остатки могут содержать определенную тенденцию либо какие-то циклические колебания. В этом случае делается вывод, что отклонения от прогноза не могут иметь случайный характер. При наличии автокорреляции в остатках оценки коэффициентов уравнения регрессии нельзя назвать состоятельными и эффективными.

Гомоскедастичность остатков означает, что дисперсия остатков Et не изменяется в зависимости от величины факторной переменной Yt_\. Если это не так, то возникает гетероскедастичностъ остатков, что так же, как и в случае автокорреляции в остатках, влияет на состоятельность оценки коэффициентов уравнения регрессии.

Для справки заметим, что состоятельными называются такие оценки, чья точность повышается по мере роста объема выборки, объема данных, на основе которых строится уравнение регрессии. В свою очередь эффективными называются такие оценки, которые имеют наименьшую дисперсию.

Перейти на страницу:

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Богатый пенсионер
Богатый пенсионер

Есть ли жизнь после пенсии? Безусловно, но ее качество зависит только от вас. Каждому, независимо от возраста, важно понимать суть пенсионной реформы. С этой книгой вы сможете:• изучить основы пенсионной реформы и определить, как увеличить страховую и накопительную части вашей пенсии;• создать себе прибавку к государственной пенсии;• выбрать ЛУЧШЕЕ из всего многообразия инвестиционных инструментов, доступных частному инвестору.Как это сделать? В книге рассмотрены все вопросы, касающиеся пенсионного обеспечения. В первой части вы познакомитесь с содержанием пенсионной реформы, узнаете структуру государственной пенсии, а также способы влияния на ее размер. Во второй части рассмотрены инвестиционные инструменты для получения негосударственной пенсии: накопительные страховые программы, негосударственные пенсионные фонды, паевые инвестиционные фонды, общие фонды банковского управления, игра на бирже, недвижимость, драгметаллы и др. Третья часть книги посвящена самому главному – правилам выбора подходящих инвестиционных инструментов для будущих пенсионеров. Жизнь на пенсии может быть богатой, а сделать ее такой поможет эта книга.

Наталья Юрьевна Смирнова , Сергей Владимирович Макаров

Финансы / Личные финансы / Финансы и бизнес