Читаем Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews полностью

В результате решения в Excel уравнения авторегрессии AR(2) со свободным членом мы получим следующий ВЫВОД ИТОГОВ, представленный в виде табл. 3.2. Возьмем из этой таблицы значения коэффициентов (см. столбец «Коэффициенты») и, подставив их в формулу (3.13), получим следующее уравнение авторегрессии (с округлением):

USDollar = 0,2260 + 1,2980 USDollar(-l) — 0,3047 USDollar(-2),

где USDollar — зависимая переменная, курс доллара США;

USDollar(-l) — независимая переменная, курс доллара США с лагом в один месяц;

USDollar(-2) — независимая переменная, курс доллара США с лагом в два месяца;

0,2260 — свободный член (константа).

При этом экономическая интерпретация этого уравнения авторегрессии 2-го порядка следующая: во-первых, в период с июня 1992 г. по апрель 2010 г. при исходном уровне 0,2260 руб. рост на 1 руб. курса доллара в текущем месяце приводил к повышению прогнозируемого курса доллара в будущем месяце в среднем на 1,2980 руб.; во-вторых, одновременно с этим рост курса доллара в прошлом месяце приводил к снижению прогнозируемого курса доллара в будущем месяце в среднем на 0,3047 руб.

Действуя согласно алгоритму действий № 4 «Оценка статистической значимости уравнения регрессии и его коэффициентов», мы можем сделать следующие выводы.

1. Поскольку коэффициент детерминации R2 дня уравнения регрессии оказался равен 0,9977, то отсюда следует, что оно в 99,77 % случаях в состоянии объяснить ежемесячные колебания курса доллара.

2. Значимость F равна 1,ЗЕ-245 или нулю, следовательно, уравнение регрессии статистически значимо как при 95 %-ном уровне надежности, так и при 99 %-ном уровне надежности.

3. Р-значение для свободного члена (константы) равно 0,037226, следовательно, константа статистически значима лишь при 95 %-ном уровне надежности, но незначима при 99 %-ном уровне надежности, поскольку ее P-значение больше 0,01. Р-значение для двух коэффициентов регрессии равно 0, следовательно, эти коэффициенты статистически значимы как при 95 %-ном уровне надежности, так и при 99 %-ном уровне надежности.

<p>3.5. Решение в EViews уравнения авторегрессии 2-го порядка AR(2)</p>

Уравнение авторегрессии 2-го порядка с константой можно решить не только в Excel, но и в EViews. Более того, решение этого уравнения регрессии в EViews имеет ряд преимуществ, обусловленных спецификой этой программы. Во-первых, в EViews можно быстрее оценить прогностическую точность полученной статистической модели; во-вторых, есть возможность протестировать полученные остатки на стационарность, наличие автокорреляции, а также провести ряд других важных тестов, о которых мы расскажем позднее. Тем читателям, которым еще не приходилось решать уравнения регрессии в EViews, советуем внимательно ознакомиться с алгоритмом действий № 6 «Как решить уравнение регрессии в EViews».

Алгоритм действий № 6 Как решить уравнение регрессии в EViewsШаг 1. Импорт данных из Excel и создание рабочего файла в EViews

Для импорта ежемесячных данных по курсу доллара (на конец месяца) за период с июня 1992 г. по апрель 2010 г. из Excel в EViews необходимо воспользоваться алгоритмом действий № 2 «Импорт данных и создание рабочего файла в EViews». При этом столбец с соответствующими данными по курсу доллара мы обозначили как USDollar.

Шаг 2. Выбор опций в EViews для решения уравнения регрессии

После импорта данных в Excel выбираем в командной строке EViews опции OBJECT/NEW OBJECT, а затем в появившемся окне (NEW OBJECT (НОВЫЙ ОБЪЕКТ) выбираем опцию EQUATION (УРАВНЕНИЕ) — рис. 3.3).

Далее в EViews появляется новое окно — EQUATION ESTIMATION (ОЦЕНКА УРАВНЕНИЯ), которое мы должны заполнить, как показано на рис. 3.4.

Следует иметь в виду, что в опции ESTIMATION SETTINGS (ПАРАМЕТРЫ ОЦЕНИВАЕМОЙ МОДЕЛИ) в мини-окне METHOD (МЕТОД РЕШЕНИЯ) по умолчанию появляется опция LS — LEAST SQUARES (NIC AND ARMA), название которой переводится как МЕТОД НАИМЕНЬШИХ КВАДРАТОВ (НЕЛИНЕЙНЫЙ МНК И ARM А). Поскольку это уравнение авторегрессии мы решаем с помощью метода наименьших квадратов, то эту опцию мы оставляем. Хотя при необходимости в EViews можно использовать несколько других методов решения уравнений, на которых мы сейчас не будем останавливаться.

Шаг 3. Выбор параметров оцениваемой статистической модели

В опции ESTIMATION SETTINGS (ПАРАМЕТРЫ ОЦЕНИВАЕМОЙ МОДЕЛИ) есть еще одно мини-окно — SAMPLE (ВЫБОРКА), в котором по умолчанию указывается либо общее количество наблюдений, либо период наблюдения. В данном случае в мини-окне SAMPLE появилась надпись: 1992М06 2010М05, что означает, что наша выборка содержит ежемесячные данные за период с июня 1992 г. по май 2010 г.

Особенно внимательным следует быть при заполнении миниокна EQUATION SPECIFICATION (СПЕЦИФИКАЦИЯ УРАВНЕНИЯ), в котором нужно написать латиницей название зависимой переменной (ее в списке всегда пишут первой слева) и независимых переменных, а также — в случае необходимости — константу (свободный член уравнения), обозначаемую латинской буквой с.

Перейти на страницу:

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Богатый пенсионер
Богатый пенсионер

Есть ли жизнь после пенсии? Безусловно, но ее качество зависит только от вас. Каждому, независимо от возраста, важно понимать суть пенсионной реформы. С этой книгой вы сможете:• изучить основы пенсионной реформы и определить, как увеличить страховую и накопительную части вашей пенсии;• создать себе прибавку к государственной пенсии;• выбрать ЛУЧШЕЕ из всего многообразия инвестиционных инструментов, доступных частному инвестору.Как это сделать? В книге рассмотрены все вопросы, касающиеся пенсионного обеспечения. В первой части вы познакомитесь с содержанием пенсионной реформы, узнаете структуру государственной пенсии, а также способы влияния на ее размер. Во второй части рассмотрены инвестиционные инструменты для получения негосударственной пенсии: накопительные страховые программы, негосударственные пенсионные фонды, паевые инвестиционные фонды, общие фонды банковского управления, игра на бирже, недвижимость, драгметаллы и др. Третья часть книги посвящена самому главному – правилам выбора подходящих инвестиционных инструментов для будущих пенсионеров. Жизнь на пенсии может быть богатой, а сделать ее такой поможет эта книга.

Наталья Юрьевна Смирнова , Сергей Владимирович Макаров

Финансы / Личные финансы / Финансы и бизнес