Читаем Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews полностью

Следовательно, чтобы повысить точность наших прогнозов, мы попробуем решить уравнение регрессии, исключив из формулы (3.14) статистически менее значимый свободный член. С этой целью необходимо воспользоваться алгоритмом действий № 6 «Как решить уравнение регрессии в EViews» (см. главу 3), но при выборе параметров оцениваемой статистической модели (см. шаг 3 этого алгоритма) мини-окно EQUATION SPECIFICATION нужно заполнить следующим образом:

USDollar USDollar(-l) USDollar(-2). (4.1)

Фактически в буквенной форме формула (4.1) приобретет следующий вид:

USDOLLAR = а x USDOLLAR(-l) + b x USDOLLAR(-2). (4.2)

Причем, введя спецификацию (4.1) в EViews, мы тем самым даем программе задание оценить коэффициенты а и b из формулы (4.2). В результате EViews выдает итоги, которые заносятся в табл. 4.1. На основе данных этой таблицы мы получаем уравнение авторегрессии 2-го порядка AR(2) без константы со следующими параметрами:

USDOLLAR = 1,321092 x USDOLLAR(-l) — 0,319415 x USDOLLAR(-2), (4.3)

где USDollar — зависимая переменная, курс доллара США;

USDollar(-l) — независимая переменная, курс доллара США с лагом в один месяц;

USDollar(-2) — независимая переменная, курс доллара США с лагом в два месяца.

Экономическая интерпретация этого уравнения авторегрессии 2-го порядка следующая: во-первых, в период с июня 1992 г. по апрель 2010 г. рост на 1 руб. курса доллара в текущем месяце приводил к повышению прогнозируемого курса доллара в будущем месяце в среднем на 1,3210 руб.; во-вторых, одновременно с этим рост курса доллара в прошлом месяце приводил к снижению прогнозируемого курса доллара в будущем месяце в среднем на 0,3194 руб.

Судя по табл. 4.1, все коэффициенты в этом уравнении имеют Р-значения (Prob.) = 0, а следовательно, можно сделать вывод, что они значимы с 99 %-ным уровнем надежности. Вполне очевидно, этого нам удалось добиться благодаря тому, что мы убрали из уравнения авторегрессии свободный член. Но как этот факт повлиял в целом на прогностические качества этой статистической модели?

Если посмотреть на коэффициент детерминации R2 (R-squared), то видно, что после удаления константы он уменьшился весьма незначительно: с 99,53 % (0,9953) до 99,52 % (0,9952), или на 0,01 процентного пункта. Еще меньше снизился скорректированный коэффициент детерминации R2 (Adjusted R-squared). Вместе с тем в уравнении авторегрессии без свободного члена незначительно снизился логарифм максимального правдоподобия (его более высокое значение, как правило, свидетельствует о более высоком качестве прогноза) и одновременно с этим незначительно повысилась величина информационного критерия Акаика (его более низкое значение, как правило, свидетельствует о более высоком качестве прогноза). Однако плюсом для уравнения без константы стал тот факт, что информационный критерий Шварца, который сильнее «штрафует» включение в уравнение регрессии дополнительных факторов, у него оказался ниже (его более низкое значение, как правило, свидетельствует о более высоком качестве прогноза).

<p>4.2. Оценка точности прогностической модели, проверка остатков на автокорреляцию и стационарность</p>

Далее проверим уравнение AR(2) без константы на наличие автокорреляции в остатках с помощью LM-теста Бройша — Годфри, используя при этом алгоритм действий № 7. При этом в мини-окне LAG SPECIFICATION зададим величину лага, равную 2, поскольку мы тестируем уравнение авторегрессии 2-го порядка. Полученные результаты занесем в табл. 4.2. Поскольку значимость (Probability) главного критерия этого теста «Наблюдения x R2»(Obs x R-squared) равна 0,1069, то, следовательно, нулевая гипотеза об отсутствии автокорреляции в остатках не может быть отклонена с 95 %-ным уровнем надежности (а точнее сказать, с 89,31 %-ным уровнем надежности). Если сравнить последнюю цифру с аналогичными данными табл. 3.4, то об отсутствии автокорреляции в остатках в последнем случае можно говорить с большей уверенностью.

Таким образом, сравнение параметров, с одной стороны, уравнения AR(2) с константой (см. табл. 3.3), а с другой стороны, уравнения AR(2) без константы (см. табл. 4.1) не помогло нам сделать окончательный вывод в пользу одного из них. Аналогичный результат у нас получился и по итогам проведения LM-теста Бройша — Годфри на наличие автокорреляции в остатках. Поэтому мы решили оценить точность прогнозов, сделанных с помощью уравнения авторегрессии без константы, воспользовавшись алгоритмом действий № 8 «Как оценить точность статистической модели в EViews». В результате получилась табл. 4.3.

Перейти на страницу:

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Богатый пенсионер
Богатый пенсионер

Есть ли жизнь после пенсии? Безусловно, но ее качество зависит только от вас. Каждому, независимо от возраста, важно понимать суть пенсионной реформы. С этой книгой вы сможете:• изучить основы пенсионной реформы и определить, как увеличить страховую и накопительную части вашей пенсии;• создать себе прибавку к государственной пенсии;• выбрать ЛУЧШЕЕ из всего многообразия инвестиционных инструментов, доступных частному инвестору.Как это сделать? В книге рассмотрены все вопросы, касающиеся пенсионного обеспечения. В первой части вы познакомитесь с содержанием пенсионной реформы, узнаете структуру государственной пенсии, а также способы влияния на ее размер. Во второй части рассмотрены инвестиционные инструменты для получения негосударственной пенсии: накопительные страховые программы, негосударственные пенсионные фонды, паевые инвестиционные фонды, общие фонды банковского управления, игра на бирже, недвижимость, драгметаллы и др. Третья часть книги посвящена самому главному – правилам выбора подходящих инвестиционных инструментов для будущих пенсионеров. Жизнь на пенсии может быть богатой, а сделать ее такой поможет эта книга.

Наталья Юрьевна Смирнова , Сергей Владимирович Макаров

Финансы / Личные финансы / Финансы и бизнес