При этом в табл. 4.4 даются критические значения теста (Test critical values), на основе которых о стационарности остатков можно судить с различным уровнем надежности. Так, в том случае, когда статистика расширенного теста Дикки — Фуллера меньше -2,576127, то вывод о стационарности остатков можно сделать с 99 %-ным уровнем надежности, а если меньше -1,942361, но больше -2,576127, то с 95 %-ным уровнем надежности. Если интересующая нас статистика меньше -1,615684, но больше -1,942361, то уровень надежности вывода о стационарности остатков снижается до 90 %.
В основе теории единичного корня лежит довольно простая формула, которая считается базовой для понимания стационарности в уравнениях авторегрессии:
где
— коэффициент регрессии;
Уравнение авторегрессии 1-го порядка считается стационарным в том случае, когда коэффициент регрессии < 1. Соответственно если > 1, то оно считается нестационарным, а следовательно, волатильность с течением времени может нарастать и стремиться к бесконечности. Следует заметить, что при необходимости в формулу (4.4) может быть добавлена константа либо константа и тренд, если, конечно, они будут статистически значимыми.
Проверка авторегрессионного процесса на стационарность проводится следующим образом. Согласно нулевой гипотезе, предполагается, что если = 1, то временной ряд нестационарный, а в случае ее опровержения принимается альтернативная гипотеза, утверждающая, что < 1, а следовательно, ряд стационарный.
В ходе решения обычного уравнения регрессии рассчитывается
Стандартный тест Дикки — Фуллера проводится после вычитания
Учитывая, что
С учетом того, что при
Однако на практике б
В дальнейшем эти знания нам потребуются для проверки авторегрессионного процесса 2-го порядка (см. уравнение (4.1)) на стационарность, а пока применим эту теорию для проверки на стационарность остатков, полученных в результате решения этого уравнения. Заполнив в алгоритме № 9 мини-окно UNIT ROOT TEST и щелкнув кнопку ОК, мы фактически решили следующее уравнение регрессии:
В результате решения расширенного теста Дикки — Фуллера мы получили табл. 4.4 с итогами теста, свидетельствующими о стационарности остатков. О том, как мы пришли к этому выводу, подробно рассказано выше (см. алгоритм действий № 9 «Как проверить в EViews остатки на стационарность модели»).
Поскольку мы доказали, что остатки, полученные по модели авторегрессии 2-го порядка без константы, являются стационарными, то, следовательно, можно сделать вывод, что их распределение носит устойчивый характер.
4.3. Описательная статистика и тестирование остатков на нормальное распределение
Теперь нашей задачей является ответить на следующий важный вопрос: является ли распределение полученных остатков нормальным? При составлении интервальных прогнозов мы исходим из предположения, что распределение остатков носит нормальный характер, поэтому теперь должны проверить, насколько это утверждение соответствует истине.