Читаем Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews полностью

s(i) — стандартное отклонение остатков, полученное по уравнению регрессии, построенному по тому же временному ряду без учета наблюдения i;

ht — i-ный диагональный элемент матрицы вида Хt(ХХ)-1Хt.

При необходимости i-ный диагональный элемент матрицы Хt(ХХ)-1Хt можно найти для каждого наблюдения, если в диалоговом мини-окне INFLUENCE STATISTICS установить опцию ПАТ MATRIX (т. е. матрица Хt(ХХ)-1Хt).

Например, величина стьюдентизированного остатка для сентября 1998 г. равна

Распределение стьюдентизированных остатков подчиняется t-статистике, получаемой в результате подстановки фиктивной переменной в первоначальное уравнение регрессии. Причем фиктивная переменная для интересующего нас наблюдения i равна 1, а для всех остальных наблюдений она равна 0. Таким образом, стьюдентизированный остаток можно интерпретировать как тест на значимость остатка определенного наблюдения с точки зрения его влияния на уравнение регрессии.

Следует заметить, что если у кого-то из читателей нет последней версии EViews или иных программ, умеющих рассчитывать стьюдентизированные остатки, то в принципе для обнаружения выбросов вполне возможно пользоваться стандартными остатками. Во всяком случае, как утверждают Н. Дрейпер и Г Смит, в подавляющем большинстве случаев, хотя и не во всех, для обнаружения выбросов вполне достаточно пользоваться графиками обычных и стандартных остатков[15].

Чтобы убедиться в справедливости этих слов, мы провели небольшой эксперимент. С этой целью уравнение регрессии USDOLLAR = а x USDOLLAR(-l) + b x USDOLLAR(-2) решено на основе данных за период с июня 1992 г. по апрель 2010 г., а затем рассмотрены полученные остатки (табл. 5.9). В том случае, когда стьюдентизированные остатки диагностируют выбросы, стандартные остатки также их выявляют (если к выбросам отнести остатки, имеющие два стандартных отклонения). Правда, поскольку стьюдентизированные остатки учитывают не только стандартное отклонение, но и дисперсию между различными наблюдениями (формула (5.6)), то величина стьюдентизированных остатков всегда выше. Причем особенно заметна эта разница относительно сентября 1998 г. и января 2009 г., т. е. когда на валютном рынке наблюдалась максимальная волатильность, обусловленная в первом случае августовским дефолтом 1998 г., а во втором случае — глобальным финансовым кризисом 2008–2009 гг.

<p>5.5. Тесты Чоу на наличие структурной стабильности во временно м ряде</p>

Диагностика выбросов в остатках является не единственным инструментом для выявления проблем, мешающих повышению точности прогностических моделей. В этом смысле, пожалуй, еще большее значение имеет тест Грегори Чоу на наличие структурной стабильности временного ряда. Поэтому следующим нашим шагом будет оценка на основе этого теста стабильности временного ряда за период с июня 1992 г. по апрель 2010 г. С методикой проведения этого теста можно познакомиться в алгоритме действий № 18.

Алгоритм действий № 18Методика проведения теста Чоу на наличие структурной стабильности во временно м ряде для прогностической моделиUSDOLLAR = а x USDOLLAR(-l) + b x USDOLLAR(-2)Шаг 1. Основные идеи, на которых строится тест Чоу на наличие структурной стабильности

Тест Чоу на диагностирование структурной стабильности проводится следующим образом. Сначала берется временной ряд (например, данные по ежемесячному курсу доллара за период с июня 1992 г. по апрель 2010 г.), относительно которого выдвигается нулевая гипотеза о его структурной стабильности. Потом этот временной ряд делится на два периода наблюдений, граница между которыми проводится в момент времени t, т. е. в момент предполагаемых структурных изменений. (При необходимости EViews позволяет проводить тест на наличие во временном ряде структурных изменений не только в какой-то один момент времени t, но и сразу для нескольких моментов, деля выборку на несколько соответствующих периодов.)

Проверка нулевой гипотезы идет путем сравнения разницы между суммой квадратов остатков, которую мы получаем, построив уравнение регрессии для единого временного ряда, и суммой квадратов остатков, получаемой при построении уравнения регрессии отдельно для каждого периода этого ряда. При этом в соответствии с методикой, предложенной Г. Чоу, определяется фактическое значение F-критерия и LR-статистики (log likelihood ratio statistic — соотношение статистики логарифмов правдоподобия). Если уровни значимости F-критерия и LR-статистики оказываются меньше 0,05, то тогда нулевая гипотеза о структурной стабильности временнoго ряда отвергается, а следовательно, влияние структурных изменений признается существенным.

Шаг 2. Проведение в EViews теста Чоу на наличие структурной стабильности
Перейти на страницу:

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Богатый пенсионер
Богатый пенсионер

Есть ли жизнь после пенсии? Безусловно, но ее качество зависит только от вас. Каждому, независимо от возраста, важно понимать суть пенсионной реформы. С этой книгой вы сможете:• изучить основы пенсионной реформы и определить, как увеличить страховую и накопительную части вашей пенсии;• создать себе прибавку к государственной пенсии;• выбрать ЛУЧШЕЕ из всего многообразия инвестиционных инструментов, доступных частному инвестору.Как это сделать? В книге рассмотрены все вопросы, касающиеся пенсионного обеспечения. В первой части вы познакомитесь с содержанием пенсионной реформы, узнаете структуру государственной пенсии, а также способы влияния на ее размер. Во второй части рассмотрены инвестиционные инструменты для получения негосударственной пенсии: накопительные страховые программы, негосударственные пенсионные фонды, паевые инвестиционные фонды, общие фонды банковского управления, игра на бирже, недвижимость, драгметаллы и др. Третья часть книги посвящена самому главному – правилам выбора подходящих инвестиционных инструментов для будущих пенсионеров. Жизнь на пенсии может быть богатой, а сделать ее такой поможет эта книга.

Наталья Юрьевна Смирнова , Сергей Владимирович Макаров

Финансы / Личные финансы / Финансы и бизнес